Yayın:
Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry

Placeholder

Akademik Birimler

Kurum Yazarları

Sürmen, Ali
Avcı, Atakan
Karamangil, Mehmet İhsan

Yazarlar

Danışman

Dil

Türü

Yayıncı:

Elsevier

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found to be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Engineering, Cyclone separator, Maximum-efficiency cyclone, Separation Efficiency, Cfb cyclones, Gas, Flow, Temperature, Fluid, Cyclone separators, Friction, Reynolds number, Surface roughness, Cyclone heights, Different effects, Flow regimes, Fluid property, Literature data, Maximum-efficiency cyclone, Operating condition, Particle diameters, Surface friction, Tangential entry, Theoretical approach, Storms

Alıntı

Sürmen, A. vd. (20011). "Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry". Powder Technology, 207(1-3), 1-8.

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details