Yayın: Sakaguchi type function defined by (p, q)-derivative operator using gegenbauer polynomials
| dc.contributor.author | Başkaran, S. | |
| dc.contributor.author | Saravanan, G. | |
| dc.contributor.author | Vanithakumari, B. | |
| dc.contributor.buuauthor | Yalçın, Sibel | |
| dc.contributor.buuauthor | YALÇIN TOKGÖZ, SİBEL | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Bölümü | |
| dc.contributor.orcid | 0000-0002-0243-8263 | |
| dc.contributor.researcherid | AAE-9745-2020 | |
| dc.date.accessioned | 2024-09-13T06:06:53Z | |
| dc.date.available | 2024-09-13T06:06:53Z | |
| dc.date.issued | 2022-07-01 | |
| dc.description.abstract | An introduction of a new subclass of bi-univalent functions involving Sakaguchi type functions defined by (p, q)-Derivative operators using Gegenbauer polynomials have been obtained. Further, the bounds for initial coefficients vertical bar a(2)vertical bar, vertical bar a(3)vertical bar and Fekete Szego inequality have been estimated. | |
| dc.identifier.doi | 10.22075/ijnaa.2022.25973.3206 | |
| dc.identifier.endpage | 2204 | |
| dc.identifier.issn | 2008-6822 | |
| dc.identifier.issue | 2 | |
| dc.identifier.startpage | 2197 | |
| dc.identifier.uri | https://doi.org/10.22075/ijnaa.2022.25973.3206 | |
| dc.identifier.uri | https://hdl.handle.net/11452/44690 | |
| dc.identifier.volume | 13 | |
| dc.identifier.wos | 000898547800018 | |
| dc.indexed.wos | WOS.ESCI | |
| dc.language.iso | en | |
| dc.publisher | Semnan Univ | |
| dc.relation.journal | International Journal Of Nonlinear Analysis And Applications | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Bi-univalent functions | |
| dc.subject | Coefficient | |
| dc.subject | Subclass | |
| dc.subject | Analytic function | |
| dc.subject | Bi-univalent function | |
| dc.subject | (p-q)- derivative operator | |
| dc.subject | Sakaguchi type function | |
| dc.subject | Gegenbauer polynomials | |
| dc.subject | Science & technology | |
| dc.subject | Physical sciences | |
| dc.subject | Mathematics | |
| dc.title | Sakaguchi type function defined by (p, q)-derivative operator using gegenbauer polynomials | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/Matematik Bölümü | |
| local.indexed.at | WOS | |
| relation.isAuthorOfPublication | 810440e4-c926-4301-a0cc-b455e6d6e960 | |
| relation.isAuthorOfPublication.latestForDiscovery | 810440e4-c926-4301-a0cc-b455e6d6e960 |
