Yayın:
Fault Classification of wind turbine gearbox bearings based on convolutional neural networks

dc.contributor.authorKarpat, F.
dc.contributor.authorKalay, O.C.
dc.contributor.authorDirik, A.E.
dc.contributor.authorKarpat, E.
dc.contributor.buuauthorKARPAT, FATİH
dc.contributor.buuauthorDİRİK, AHMET EMİR
dc.contributor.buuauthorKARPAT, ESİN
dc.contributor.buuauthorKalay, Onur Can
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
dc.contributor.departmentBilgisayar Mühendisliği Ana Bilim Dalı
dc.contributor.departmentMakine Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0001-8474-7328
dc.contributor.orcid0000-0001-8643-6910
dc.contributor.orcid0000-0002-6200-1717
dc.contributor.orcid0000-0002-6200-1717
dc.contributor.scopusid24366799400
dc.contributor.scopusid55807371600
dc.contributor.scopusid23033658100
dc.contributor.scopusid26428191600
dc.date.accessioned2025-05-13T06:38:28Z
dc.date.issued2022-01-03
dc.description.abstractGearbox bearings are critical elements of wind power generation systems. Their stable operation supports the power generation, thus reducing the downtime and improving the economic efficiency of wind farms. With the wide availability of sensors, data-driven methods have started to be utilized instead of physical-based methods for condition monitoring of wind energy infrastructures. Deep learning provides significant advantages to achieving this end due to its ability to extract and select representative features without expert knowledge. The present study proposed an intelligent method based on one-dimensional convolutional neural networks (1D-CNN) to extract useful features from the vibration signals and classify different bearing faults. The performance of the proposed 1D-CNN model was evaluated employing the Case Western Reserve University dataset. As a result, the proposed method achieved an average prediction accuracy of 99.56%. The findings confirmed that the method has good stability and potentially be used to reduce operation and maintenance costs.
dc.description.sponsorshipTurkish Aircraft Industries Corporation
dc.description.sponsorshipTurkish Aerospace Industries
dc.identifier.doi10.22545/2022/00190
dc.identifier.endpage 83
dc.identifier.issn1949-0569
dc.identifier.scopus2-s2.0-85134055463
dc.identifier.startpage71
dc.identifier.urihttps://hdl.handle.net/11452/51714
dc.identifier.volume13
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherATLAS
dc.relation.bapFGA-2021-496
dc.relation.journalTransdisciplinary Journal of Engineering and Science
dc.relation.tubitakTÜBİTAK
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectWind power
dc.subjectRolling bearing
dc.subjectFault diagnosis
dc.subjectDeep learning
dc.subject.scopusInnovative Fault Diagnosis Methods for Machinery
dc.titleFault Classification of wind turbine gearbox bearings based on convolutional neural networks
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/ Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublication56b8a5d3-7046-4188-ad6e-1ae947a1b51d
relation.isAuthorOfPublication37bb7eb8-5671-4304-8f09-5f48c51ec56f
relation.isAuthorOfPublication99e2dd84-0120-4c04-a2f5-3b242abc84f2
relation.isAuthorOfPublication.latestForDiscovery56b8a5d3-7046-4188-ad6e-1ae947a1b51d

Dosyalar