Yayın: Nullity conditions in paracontact geometry
| dc.contributor.author | Cappelletti, Montano Beniamino | |
| dc.contributor.buuauthor | Küpeli, Erken İrem | |
| dc.contributor.buuauthor | Murathan, Cengizhan | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Bölümü | |
| dc.contributor.researcherid | ABH-3658-2020 | |
| dc.contributor.researcherid | ABE-8167-2020 | |
| dc.contributor.scopusid | 55623226100 | |
| dc.contributor.scopusid | 6506718146 | |
| dc.date.accessioned | 2022-01-24T12:39:46Z | |
| dc.date.available | 2022-01-24T12:39:46Z | |
| dc.date.issued | 2012-12 | |
| dc.description.abstract | The paper is a complete study of paracontact metric manifolds for which the Reeb vector field of the underlying contact structure satisfies a nullity condition (the condition (1.2), for some real numbers (kappa) over bar and (mu) over bar). This class of pseudo-Riemannian manifolds, which includes para-Sasakian manifolds, was recently defined in Cappelletti Montano (2010) [13]. In this paper we show in fact that there is a kind of duality between those manifolds and contact metric (kappa, mu)-spaces. In particular, we prove that, under some natural assumption, any such paracontact metric manifold admits a compatible contact metric (kappa, mu)-structure (eventually Sasakian). Moreover, we prove that the nullity condition is invariant under D-homothetic deformations and determines the whole curvature tensor field completely. Finally non-trivial examples in any dimension are presented and the many differences with the contact metric case, due to the non-positive definiteness of the metric, are discussed. | |
| dc.identifier.citation | Cappelletti, M. B. vd. (2012). "Nullity conditions in paracontact geometry". Differential Geometry and its Applications, 30(6), 665-693. | |
| dc.identifier.doi | 10.1016/j.difgeo.2012.09.006 | |
| dc.identifier.endpage | 693 | |
| dc.identifier.issn | 0926-2245 | |
| dc.identifier.issn | 1872-6984 | |
| dc.identifier.issue | 6 | |
| dc.identifier.scopus | 2-s2.0-84867468143 | |
| dc.identifier.startpage | 665 | |
| dc.identifier.uri | https://doi.org/10.1016/j.difgeo.2012.09.006 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0926224512000861 | |
| dc.identifier.uri | http://hdl.handle.net/11452/24273 | |
| dc.identifier.volume | 30 | |
| dc.identifier.wos | 000313917800010 | |
| dc.indexed.wos | SCIE | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.collaboration | Yurt dışı | |
| dc.relation.journal | Differential Geometry and its Applications | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Mathematics | |
| dc.subject | Paracontact metric manifold | |
| dc.subject | Para-sasakian | |
| dc.subject | Contact metric manifold | |
| dc.subject | Kappa, mu-manifold | |
| dc.subject | Legendre foliation | |
| dc.subject | Contact metric kappa | |
| dc.subject | Manifolds | |
| dc.subject.scopus | Slant Submanifold; Kaehler Manifold; Sasakian Space Form | |
| dc.subject.wos | Mathematics, applied | |
| dc.subject.wos | Mathematics | |
| dc.title | Nullity conditions in paracontact geometry | |
| dc.type | Article | |
| dc.wos.quartile | Q3 (Mathematics) | |
| dc.wos.quartile | Q4 (Mathematics, applied) | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/Matematik Bölümü | |
| local.indexed.at | Scopus | |
| local.indexed.at | WOS |
