Yayın:
An improved electromagnetic field optimization for the global optimization problems

dc.contributor.authorYurtkuran, Alkin
dc.contributor.buuauthorYURTKURAN, ALKIN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0003-2978-2811
dc.contributor.researcheridAAH-1410-2021
dc.date.accessioned2024-07-12T05:40:05Z
dc.date.available2024-07-12T05:40:05Z
dc.date.issued2019-04-16
dc.description.abstractElectromagnetic field optimization (EFO) is a relatively new physics-inspired population-based metaheuristic algorithm, which simulates the behavior of electromagnets with different polarities and takes advantage of a nature-inspired ratio, known as the golden ratio. In EFO, the population consists of electromagnetic particles made of electromagnets corresponding to variables of an optimization problem and is divided into three fields: positive, negative, and neutral. In each iteration, a new electromagnetic particle is generated based on the attraction-repulsion forces among these electromagnetic fields, where the repulsion force helps particle to avoid the local optimal point, and the attraction force leads to find global optimal. This paper introduces an improved version of the EFO called improved electromagnetic field optimization (iEFO). Distinct from the EFO, the iEFO has two novel modifications: new solution generation function for the electromagnets and adaptive control of algorithmic parameters. In addition to these major improvements, the boundary control and randomization procedures for the newly generated electromagnets are modified. In the computational studies, the performance of the proposed iEFO is tested against original EFO, existing physics-inspired algorithms, and state-of-the-art meta-heuristic algorithms as artificial bee colony algorithm, particle swarm optimization, and differential evolution. Obtained results are verified with statistical testing, and results reveal that proposed iEFO outperforms the EFO and other considered competitor algorithms by providing better results.
dc.identifier.doi10.1155/2019/6759106
dc.identifier.issn1687-5265
dc.identifier.scopus2-s2.0-85067001150
dc.identifier.urihttps://doi.org/10.1155/2019/6759106
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1155/2019/6759106
dc.identifier.urihttps://hdl.handle.net/11452/43216
dc.identifier.volume2019
dc.identifier.wos000470165700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherHindawi
dc.relation.journalComputational Intelligence and Neuroscience
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAlgorithm
dc.subjectMathematical & computational biology
dc.subjectNeurosciences & neurology
dc.titleAn improved electromagnetic field optimization for the global optimization problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication58f1dbde-5e19-48cf-ae91-ba7a1b4e2a68
relation.isAuthorOfPublication.latestForDiscovery58f1dbde-5e19-48cf-ae91-ba7a1b4e2a68

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Yurtkuran_2019.pdf
Boyut:
623.49 KB
Format:
Adobe Portable Document Format