Yayın:
Chemical oxygen demand and color removal from textile wastewater by UV/H2O2 using artificial neural networks

dc.contributor.buuauthorYonar, Taner Yona
dc.contributor.buuauthorYalılı , Melike Kılıç
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentÇevre Mühendisliği Bölümü
dc.contributor.orcid0000-0002-0387-0656
dc.contributor.researcheridAAD-9468-2019
dc.contributor.researcheridAAG-8505-2021
dc.contributor.scopusid6505923781
dc.contributor.scopusid55897413400
dc.date.accessioned2024-02-26T10:30:18Z
dc.date.available2024-02-26T10:30:18Z
dc.date.issued2013-08-13
dc.description.abstractThe photooxidation of pollutants, especially chemical oxygen demand (COD) and color, in textile industrial wastewater was performed in the presence of hydrogen peroxide (H2O2), using 256 nm UV light (15 W), to model the discoloration and COD elimination processes and characterize the influence of process variables. Within this study, data were obtained through a NeuroSolutions 5.06 model and successfully tested. Each sample was characterized by three independent variables (i.e., pH, H2O2 concentration, and time of operation) and two dependent variables (i.e., color and COD). The results indicated that pH was the predominant variable, and the reaction mean time and H2O2 volume were the less influential variables. The neural model obtained presented coefficients of correlation of 99% for COD and 97% for color, indicating the prediction power of the model and its character of generalization.
dc.identifier.citationYonar, T. Y. ve Kılıç, M. Y. (2013). "Chemical oxygen demand and color removal from textile wastewater by UV/H2O2 using artificial neural networks". Water Environment Research, 86(11), 2159-2165.
dc.identifier.doi10.2175/106143014X14062131178277
dc.identifier.eissn1554-7531
dc.identifier.endpage2165
dc.identifier.issn1061-4303
dc.identifier.issue11
dc.identifier.pubmed25509520
dc.identifier.scopus2-s2.0-84922229422
dc.identifier.startpage2159
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.2175/106143014X14062131178277
dc.identifier.urihttps://hdl.handle.net/11452/39962
dc.identifier.volume86
dc.identifier.wos000343915000001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherWiley
dc.relation.bapKUAP(M)-2013/47
dc.relation.journalWater Environment Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial neural network
dc.subjectUV/H2O2
dc.subjectChemical oxygen demand (COD)
dc.subjectColor
dc.subjectTextile wastewater
dc.subjectAdvanced oxidation processes
dc.subjectAqueous-solutions
dc.subjectDecolorization
dc.subjectAzo-dye
dc.subjectDegradation
dc.subjectDyestuffs
dc.subjectPhotodegradation
dc.subjectPrediction
dc.subjectEngineering
dc.subjectEnvironmental sciences & ecology
dc.subjectWater resources
dc.subjectMarine & freshwater biology
dc.subjectColor
dc.subjectColor removal (water treatment)
dc.subjectTextiles
dc.subjectNeural networks
dc.subjectPhotooxidation
dc.subjectOxygen
dc.subjectTungsten
dc.subjectDependent variables
dc.subjectTextile wastewater
dc.subjectElimination process
dc.subjectProcess Variables
dc.subjectIndependent variables
dc.subjectNeural modeling
dc.subjectIndustrial wastewaters
dc.subjectChemical oxygen demand
dc.subjectArtificial neural network
dc.subjectWastewater
dc.subjectChemical oxygen demand
dc.subjectUltraviolet radiation
dc.subjectColor
dc.subjectTextile industry
dc.subjectHydrogen peroxide
dc.subjectPh
dc.subjectLight intensity
dc.subjectPhotooxidation
dc.subjectNumerical model
dc.subject.emtreeArticle
dc.subject.emtreeArtificial neural network
dc.subject.emtreeBiochemical oxygen demand
dc.subject.emtreeChemical oxygen demand
dc.subject.emtreeColor
dc.subject.emtreePh
dc.subject.emtreePhotooxidation
dc.subject.emtreePriority journal
dc.subject.emtreeReaction time
dc.subject.emtreeSuspended particulate matter
dc.subject.emtreeTextile industry
dc.subject.emtreeUltraviolet radiation
dc.subject.emtreeWaste water
dc.subject.emtreeWaste water management
dc.subject.emtreeAnalysis
dc.subject.emtreeArtificial neural network
dc.subject.emtreeChemistry
dc.subject.emtreeIndustrial waste
dc.subject.emtreePhotochemistry
dc.subject.emtreeProcedures
dc.subject.emtreeSewage
dc.subject.emtreeTextile industry
dc.subject.emtreeWaste water
dc.subject.emtreeWater pollutant
dc.subject.emtreeHydrogen peroxide
dc.subject.emtreeNitrogen
dc.subject.emtreePhosphorus
dc.subject.emtreeColoring agent
dc.subject.emtreeHydrogen peroxide
dc.subject.emtreeIndustrial waste
dc.subject.emtreeOxygen
dc.subject.emtreeWaste water
dc.subject.emtreeWater pollutant
dc.subject.meshColoring agents
dc.subject.meshHydrogen peroxide
dc.subject.meshIndustrial waste
dc.subject.meshNeural networks (computer)
dc.subject.meshOxygen
dc.subject.meshPhotochemical processes
dc.subject.meshTextile industry
dc.subject.meshUltraviolet rays
dc.subject.meshWaste disposal, fluid
dc.subject.meshWaste water
dc.subject.meshWater pollutants, chemical
dc.subject.scopusAdvanced Oxidation; Ferrioxalate; Degradation
dc.subject.wosEngineering, environmental
dc.subject.wosWater resources
dc.subject.wosEnvironmental sciences
dc.subject.wosLimnology
dc.titleChemical oxygen demand and color removal from textile wastewater by UV/H2O2 using artificial neural networks
dc.typeArticle
dc.wos.quartileQ3 (Water Resources)
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Çevre Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
local.indexed.atPubMed

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama