Yayın:
Neural network applications for automatic new topic identification of FAST and Excite search engine transaction logs

dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.buuauthorÖzmutlu, Hüseyin Cenk
dc.contributor.buuauthorCoşar, Gencer Coşkun
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridABH-5209-2020
dc.contributor.researcheridAAH-4480-2021
dc.contributor.scopusid6603660605
dc.contributor.scopusid6603061328
dc.contributor.scopusid25027011500
dc.date.accessioned2022-04-21T07:17:19Z
dc.date.available2022-04-21T07:17:19Z
dc.date.issued2011-05
dc.description.abstractContent analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for more efficient search engines. Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. This study proposes an artificial neural network application in the area of search engine research to automatically identify topic changes in a user session by using statistical characteristics of queries, such as time intervals and query reformulation patterns. Sample data logs from the FAST and Excite search engines are selected to train the neural network and then the neural network is used to identify topic changes in the data log. As a result, almost all the performance measures yielded favourable results.
dc.identifier.citationÖzmutlu, S. vd. (2011). "Neural network applications for automatic new topic identification of FAST and Excite search engine transaction logs". Expert Systems, 28(2), 101-122.
dc.identifier.doi10.1111/j.1468-0394.2010.00531.x
dc.identifier.endpage122
dc.identifier.issn0266-4720
dc.identifier.issn1468-0394
dc.identifier.issue2
dc.identifier.scopus2-s2.0-79955052022
dc.identifier.startpage101
dc.identifier.urihttps://doi.org/10.1111/j.1468-0394.2010.00531.x
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/j.1468-0394.2010.00531.x
dc.identifier.urihttp://hdl.handle.net/11452/25935
dc.identifier.volume28
dc.identifier.wos000289684100002
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherWiley
dc.relation.journalExpert Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak105M320
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectSearch engine
dc.subjectTopic identification
dc.subjectSession identification
dc.subjectNeural networks
dc.subjectQuery clustering
dc.subjectCluster analysis
dc.subjectFire fighting equipment
dc.subjectInformation retrieval
dc.subjectNeural networks
dc.subjectArtificial Neural Network
dc.subjectContent analysis
dc.subjectData log
dc.subjectEngine research
dc.subjectKey issues
dc.subjectNeural network application
dc.subjectPerformance measure
dc.subjectQuery clustering
dc.subjectQuery reformulation
dc.subjectSample data
dc.subjectSearch sessions
dc.subjectSession identification
dc.subjectStatistical characteristics
dc.subjectTime interval
dc.subjectTopic identification
dc.subjectTransaction log
dc.subjectUser query
dc.subjectUser sessions
dc.subjectSearch engines
dc.subjectInformation-seeking
dc.subjectWeb
dc.subjectSession
dc.subjectRetrieval
dc.subjectContext
dc.subjectUsers
dc.subjectLife
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosComputer science, theory & methods
dc.titleNeural network applications for automatic new topic identification of FAST and Excite search engine transaction logs
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama