Publication:
Hybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry

dc.contributor.buuauthorKaren, İdris
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.buuauthorKaya, Necmettin
dc.contributor.buuauthorÖztürk, Nursel
dc.contributor.buuauthorÖztürk, Ferruh
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0002-8297-0777
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridAAG-9923-2021
dc.contributor.researcheridR-4929-2018
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAG-9336-2021
dc.contributor.scopusid14831337300
dc.contributor.scopusid7102365439
dc.contributor.scopusid7005013334
dc.contributor.scopusid7005688805
dc.contributor.scopusid56271685800
dc.date.accessioned2021-09-07T05:49:02Z
dc.date.available2021-09-07T05:49:02Z
dc.date.issued2006-11-15
dc.description.abstractAlthough genetic algorithm and multi-objective optimization techniques are widely used to solve problems in the design and manufacturing area, further improvements are required to develop more efficient techniques regarding multi-objective optimization problems. The main goal of the present research is to further develop and strengthen the genetic algorithm based multi-objective optimization approach to generate real-world design solutions in the automotive industry. In this research, a new hybrid approach based on Taguchi's method and a genetic algorithm is presented to achieve better Pareto-optimal set solutions for multi-objective design optimization problems. In addition, fatigue damage and life are also considered to evaluate the results of the design optimization process. The validity and efficiency of the proposed approach are evaluated and illustrated with test problems taken from the literature. It is then applied to a vehicle component taken from the automotive industry.
dc.identifier.citationKaren, İ. vd. (2006). ''Hybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry''. International Journal of Production Research, 44(22), 4897-4914.
dc.identifier.endpage4914
dc.identifier.issn0020-7543
dc.identifier.issn1366-588X
dc.identifier.issue22
dc.identifier.scopus2-s2.0-33749576595
dc.identifier.startpage4897
dc.identifier.urihttps://doi.org/10.1080/00207540600619932
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/00207540600619932
dc.identifier.urihttp://hdl.handle.net/11452/21716
dc.identifier.volume44
dc.identifier.wos000241266000012
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.journalInternational Journal of Production Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectOperations research & management science
dc.subjectEngineering
dc.subjectTaguchi's method
dc.subjectMulti-objective optimization
dc.subjectGenetic algorithm
dc.subjectPerformance
dc.subjectNeural-network
dc.subjectTopology design
dc.subjectParameter design
dc.subjectRobust design
dc.subjectShape optimization
dc.subjectIndustrial research
dc.subjectOptimal systems
dc.subjectOptimization
dc.subjectPareto principle
dc.subjectProblem solving
dc.subjectMulti objective optimization
dc.subjectPareto optimal set solutions
dc.subjectAutomotive industry
dc.subject.scopusRobust Parameter Design; Multiple Responses; Desirability Function
dc.subject.wosEngineering, industrial
dc.subject.wosEngineering, manufacturing
dc.subject.wosOperations research & management science
dc.titleHybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: