Yayın:
Image-based food groups and portion prediction by using deep learning

dc.contributor.authorNoğay, Hıdır Selçuk
dc.contributor.authorNoğay, Nalan Hakime
dc.contributor.authorAdeli, Hojjat
dc.contributor.buuauthorNOĞAY, HIDIR SELÇUK
dc.contributor.buuauthorNOĞAY, NALAN HAKİME
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik-Elektronik Mühendisliği Bölümü
dc.contributor.departmentSağlık Bilimleri Fakültesi
dc.contributor.departmentBeslenme ve Diyetetik Bölümü
dc.contributor.orcid0000-0001-9105-508X
dc.contributor.researcheridJPK-1615-2023
dc.contributor.researcheridMBI-0869-2025
dc.date.accessioned2025-10-21T09:17:18Z
dc.date.issued2025-03-01
dc.description.abstractChronic diseases such as obesity and hypertension due to malnutrition can be prevented by following the appropriate diet, correct diet intake with correct measuring portion size, and developing healthy eating habits. Having a system that can automatically measure food consumption is important to determine whether individual nutritional needs are being met in order to accurately diagnose and solve nutritional problems, act quickly, and minimize the risk of malnutrition due to the cross-cultural diversity of foods. In this study, a deep learning system has been developed and implemented for automatically grouping and classifying foods. Dishes from Turkish cuisine were chosen as a sample for application and testing. The deep learning method used in this system is convolutional neural network (CNN) models based on image recognition. This study developed and implemented a deep learning system using CNNs to classify food groups and estimate portion sizes of Turkish cuisine dishes, achieving accuracy rates of up to 80% for food group classification and 80.47% for portion estimation with the inclusion of data augmentation.
dc.identifier.doi10.1111/1750-3841.70116
dc.identifier.issn0022-1147
dc.identifier.issue3
dc.identifier.scopus2-s2.0-86000522648
dc.identifier.urihttps://doi.org/10.1111/1750-3841.70116
dc.identifier.urihttps://hdl.handle.net/11452/55947
dc.identifier.volume90
dc.identifier.wos001439110800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalJournal of food science
dc.subjectConvolutional neural networks
dc.subjectData augmentation
dc.subjectFood groups
dc.subjectPortion
dc.subjectTransfer learning
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectFood science & technology
dc.titleImage-based food groups and portion prediction by using deep learning
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü
local.contributor.departmentSağlık Bilimleri Fakültesi/Beslenme ve Diyetetik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication46ad5538-7745-40df-9798-f5b15f3fd19a
relation.isAuthorOfPublicationf4945ace-0c55-48af-bf5f-2015472ce72f
relation.isAuthorOfPublication.latestForDiscovery46ad5538-7745-40df-9798-f5b15f3fd19a

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Noğay_vd_2025.pdf
Boyut:
911.06 KB
Format:
Adobe Portable Document Format