Yayın:
Aircraft wing rib component optimization using artificial neural network-assisted superb fairy-wren algorithm

dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.authorGurses, Dildar
dc.contributor.authorYildiz, Ali Riza
dc.contributor.buuauthorGÜRSES, DİLDAR
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentGemlik Asım Kocabıyık MYO
dc.contributor.departmentElektrik ve Enerji Bölümü
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridJCN-8328-2023
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2025-10-21T09:24:31Z
dc.date.issued2025-07-28
dc.description.abstractOptimization techniques are crucial in industrial engineering, particularly in addressing complex design and operational challenges. Traditional optimization methods often struggle with high computational costs, poor convergence rates, and multimodal fitness functions. To overcome these limitations, nature-inspired metaheuristic algorithms have gained popularity. This study introduces a modified artificial neural network-assisted superb fairy-wren optimization algorithm (MSFWOA) to enhance the search and exploitation capabilities of the standard superb fairy-wren optimizer. The algorithm integrates artificial neural networks (ANNs) to improve solution accuracy and convergence efficiency. The effectiveness of MSFWOA is demonstrated through its application to industrial optimization problems, including heat exchanger cost minimization, reinforced concrete beam structural optimization, piston lever volumetric optimization, pressure vessel design, and aircraft wing rib component structural optimization. Comparative analysis with existing metaheuristic algorithms highlights the superior performance of MSFWOA in achieving optimal solutions with reduced computational cost and higher precision.
dc.identifier.doi10.1515/mt-2025-0135
dc.identifier.endpage1527
dc.identifier.issn0025-5300
dc.identifier.issue9
dc.identifier.scopus2-s2.0-105011863789
dc.identifier.startpage1520
dc.identifier.urihttps://doi.org/10.1515/mt-2025-0135
dc.identifier.urihttps://hdl.handle.net/11452/56007
dc.identifier.volume67
dc.identifier.wos001542048600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de Gruyter
dc.relation.journalMaterials Testing
dc.subjectMarine predators algorithm
dc.subjectSalp swarm algorithm
dc.subjectDesign optimizatıon
dc.subjectGenetic algorithm
dc.subjectSearch
dc.subjectAircraft
dc.subjectWing
dc.subjectRib
dc.subjectOptimization
dc.subjectSuperb fairy-wren algorithm
dc.subjectTechnology
dc.subjectScience & Technology
dc.subjectMaterials science
dc.subjectMaterials Science, Characterization & Testing
dc.titleAircraft wing rib component optimization using artificial neural network-assisted superb fairy-wren algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentGemlik Asım Kocabıyık MYO/Elektrik ve Enerji Bölümü
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication1af1d254-5397-464d-b47b-7ddcbaff8643
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery1af1d254-5397-464d-b47b-7ddcbaff8643

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Gurses_Yildiz_2025.pdf
Boyut:
848.9 KB
Format:
Adobe Portable Document Format