Yayın:
Evaluation of the effect of using different types of clinker grinding aids on grinding performance by numerical analysis

dc.contributor.authorEser, Murat
dc.contributor.buuauthorKOBYA, VEYSEL
dc.contributor.buuauthorBİLGİN, METİN
dc.contributor.buuauthorMARDANİ, ALİ
dc.contributor.buuauthorKaya, Yahya
dc.contributor.buuauthorMardani, Naz
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.contributor.departmentBilgisayar Mühendisliği Ana Bilim Dalı
dc.contributor.departmentEğitim Fakültesi
dc.contributor.departmentMatematik ve Fen Bilgisi Eğitimi Ana Bilim Dalı
dc.contributor.orcid0000-0003-0326-5015
dc.contributor.researcheridC-7860-2015
dc.contributor.researcheridAAH-2049-2021
dc.contributor.researcheridNYT-2369-2025
dc.date.accessioned2025-10-14T06:27:09Z
dc.date.issued2025-06-09
dc.description.abstractTo develop more environmentally friendly and sustainable cementitious systems, the use of grinding aids (GAs) during the clinker grinding process has increasingly gained attention. Although the mechanisms of the action of grinding aids (GAs) are known, the selection of an effective grinding aid (GA) can be difficult due to the complexity of appropriate selection criteria. For this reason, it is important to model the effect of GA properties on grinding performance. In this study, seven different types of GAs were used in four different dosages, and time-dependent grinding was performed. The Blaine fineness values of cements were compared after each grinding process. In addition, the modeling of these parameters using machine learning and ensemble learning methods was discussed. The Synthetic Minority Over-sampling Technique (Smote) was used to generate artificial data and increase the number of data for the grinding efficiency experiment. The data were modeled using methods such as Artificial Neural Networks (ANNs), Attentive Interpretable Tabular Learning (TabNet), Random Forests (RFs), and the XGBoost Regressor (XGBoost), and the ranking of the parameters affecting the Blaine properties was determined using the XGBoost method. The XGBoost method achieved the best results in the MAE, RMSE, and LogCosh metrics with values of 21.0384, 33.7379, and 15.4846, respectively, in the experimental modeling studies with augmented data. This study contributes to a better understanding of the relationship between GA selection and milling process performance.
dc.identifier.doi10.3390/ma18122712
dc.identifier.issue12
dc.identifier.scopus2-s2.0-105009023264
dc.identifier.urihttps://doi.org/10.3390/ma18122712
dc.identifier.urihttps://hdl.handle.net/11452/55531
dc.identifier.volume18
dc.identifier.wos001517240100001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMDPI
dc.relation.bapFPDD-2025-2210
dc.relation.journalMaterials
dc.subjectCement
dc.subjectSmote
dc.subjectGrinding efficiency
dc.subjectGrinding aids
dc.subjectBlaine fineness
dc.subjectArtificial neural networks
dc.subjectTabNet
dc.subjectXGBoost
dc.subjectRandom Forest
dc.subjectMachine learning
dc.subjectRegression analysis
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMetallurgy & Metallurgical Engineering
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectPhysics
dc.titleEvaluation of the effect of using different types of clinker grinding aids on grinding performance by numerical analysis
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Ana Bilim Dalı
local.contributor.departmentEğitim Fakültesi/Matematik ve Fen Bilgisi Eğitimi Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationa8b5c69d-a587-4680-8a7a-e531e5485cf6
relation.isAuthorOfPublicationcf59076b-d88e-4695-a08c-b06b98b4e25a
relation.isAuthorOfPublicationdd2de18c-4ec0-4272-8671-0094502e4353
relation.isAuthorOfPublication.latestForDiscoverya8b5c69d-a587-4680-8a7a-e531e5485cf6

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Kaya_vd_2025.pdf
Boyut:
1.99 MB
Format:
Adobe Portable Document Format