Publication: Testere makinelerinden toplanan veriler ile kesme parametrelerinin iyileştirmesi ve üretim verimliliği üzerine etkilerinin incelenmesi
Date
Authors
Authors
Alisinoğlu, Mahmut Berkan
Advisor
Hayber, Şekip Esat
Language
Type
Publisher:
Bursa Uludağ Üniversitesi
Journal Title
Journal ISSN
Volume Title
Abstract
Talaşlı imalat hatlarının en önemli aşamalarından biri, malzemenin doğru ve verimli bir şekilde kesilmesi sürecidir. Bu işlemi gerçekleştiren testere makineleri, üretim hattının temel bileşenlerinden biridir. Testere makineleri, ham malzemelerin istenilen boyutlarda kesilmesiyle üretim sürecini başlatır ve bu aşama, üretimin geri kalan adımlarının verimliliğini doğrudan etkiler. Dolayısıyla, kesme işlemi, tüm imalat sürecinin kritik bir noktasını oluşturur ve makinelerin performansı, üretim verimliliği açısından büyük önem taşır. Geleneksel testere makineleri sabit kesme parametreleriyle çalışırken, bu makinelerin verimliliği genellikle sabit faktörlere dayanır. Fakat, kesme parametrelerinin dinamik olarak ayarlanabilmesi, çok daha verimli ve doğru kesimler yapılmasını sağlar. Bu bağlamda, testere makinesinden alınan gerçek zamanlı sensör verileriyle, kesme parametrelerinin dinamik bir şekilde iyileştirilmesi sağlanmış ve bu parametrelerin üretim verimliliğine olan etkileri detaylı bir şekilde incelenmiştir. Bu süreçte programlanabilir lojik kontrolör (PLC), dijital ve analog giriş modülleri, EtherCAT coupler, yük hücresi, enerji analizörü ve endüktif ölçüm sensörleri kullanılarak testler gerçekleştirilmiştir. Çalışmada gerçekleştirilen testler, kesme performansı, yüzey pürüzlülüğü, kesme dikliği ve enerji tüketimi gibi önemli çıktıları içermektedir. Yapılan testler, geleneksel sabit parametreli kesme yöntemlerine kıyasla dinamik parametre güncellemeleriyle yapılan kesme işlemlerinin çok daha yüksek bir performans sunduğunu göstermektedir. Sonuç olarak, bu tez çalışması, testere makinelerinde kullanılan geleneksel kesme yöntemlerinin yerini, sensör verileriyle dinamik olarak güncellenen kesme parametrelerine dayanan “akıllı kesme” sistemine bırakabileceğini ortaya koymuştur. Bu sistem sayesinde, testere makinesi daha yüksek kesme performansına sahip hale gelmiş ve üretim verimliliği önemli ölçüde artırılmıştır.
One of the most important stages in machining production lines is the process of cutting the material accurately and efficiently. The saw machines that perform this operation are main components of the production line. Saw machines initiate the production process by cutting raw materials into the desired dimensions, and this stage directly affects the efficiency of the remaining steps in production. Therefore, the cutting process is a critical point in the entire manufacturing process, and the performance of the machines plays a crucial role in terms of production efficiency. Traditional saw machines operate with fixed cutting parameters, and the efficiency of these machines typically relies on static factors. However, the ability to dynamically adjust cutting parameters allows for much more efficient and precise cuts. In this study, real-time sensor data collected from the saw machine has been used to dynamically improve the cutting parameters, and the impact of these parameters on production efficiency has been thoroughly examined. In this process, tests have been conducted using PLC, digital and analog input modules, EtherCAT couplers, loadcells, energy analyzers, and inductive measurement sensors. The tests conducted in the study include important outputs such as cutting performance, surface roughness, cutting perpendicularity, and energy consumption. The results show that the cutting processes with dynamic parameter updates outperform traditional cutting methods with fixed parameters. As a result, this thesis demonstrates that traditional cutting methods used in saw machines could be replaced by an "intelligent cutting" system based on dynamically updated cutting parameters using sensor data. Through this system, the saw machine has achieved higher cutting performance, and production efficiency has been significantly improved.
One of the most important stages in machining production lines is the process of cutting the material accurately and efficiently. The saw machines that perform this operation are main components of the production line. Saw machines initiate the production process by cutting raw materials into the desired dimensions, and this stage directly affects the efficiency of the remaining steps in production. Therefore, the cutting process is a critical point in the entire manufacturing process, and the performance of the machines plays a crucial role in terms of production efficiency. Traditional saw machines operate with fixed cutting parameters, and the efficiency of these machines typically relies on static factors. However, the ability to dynamically adjust cutting parameters allows for much more efficient and precise cuts. In this study, real-time sensor data collected from the saw machine has been used to dynamically improve the cutting parameters, and the impact of these parameters on production efficiency has been thoroughly examined. In this process, tests have been conducted using PLC, digital and analog input modules, EtherCAT couplers, loadcells, energy analyzers, and inductive measurement sensors. The tests conducted in the study include important outputs such as cutting performance, surface roughness, cutting perpendicularity, and energy consumption. The results show that the cutting processes with dynamic parameter updates outperform traditional cutting methods with fixed parameters. As a result, this thesis demonstrates that traditional cutting methods used in saw machines could be replaced by an "intelligent cutting" system based on dynamically updated cutting parameters using sensor data. Through this system, the saw machine has achieved higher cutting performance, and production efficiency has been significantly improved.
Description
Source:
Keywords:
Keywords
Kesme performansı, Endüstriyel otomasyon, Dinamik kesme kontrolü, Enerji verimliliği, Cutting performance, Industrial automation, Dynamic cutting control, Energy efficiency