Yayın:
Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study

dc.contributor.authorManohara, S. R.
dc.contributor.authorHanagodimath, S. M.
dc.contributor.authorGerward, Leif
dc.contributor.buuauthorKüçük, Nil
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.researcherid0000-0002-9193-4591
dc.contributor.scopusid24436223800
dc.date.accessioned2022-11-17T07:08:40Z
dc.date.available2022-11-17T07:08:40Z
dc.date.issued2013-05
dc.description.abstractIn this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca-3(PO4)(2)] in the energy region 0.015-15 MeV, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg-Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.43 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA data for TLD materials have been given with penetration depth and incident photon energy as comparative to the results of the interpolation method using the Geometrical Progression (G-P) fitting formula.
dc.identifier.citationKüçük, N. vd. (2013). "Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study". Radiation Physics and Chemistry, 85, 10-22.
dc.identifier.doi10.1016/j.radphyschem.2013.01.021
dc.identifier.endpage22
dc.identifier.issn0969-806X
dc.identifier.scopus2-s2.0-84874582759
dc.identifier.startpage10
dc.identifier.urihttps://doi.org/10.1016/j.radphyschem.2013.01.021
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0969806X13000261
dc.identifier.urihttp://hdl.handle.net/11452/29472
dc.identifier.volume86
dc.identifier.wos000317886200003
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherPergamon-Elsevier Science
dc.relation.bapUAP(F)-2011/74
dc.relation.collaborationYurt dışı
dc.relation.journalRadiation Physics and Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectChemistry
dc.subjectNuclear science & technology
dc.subjectPhysics
dc.subjectBuildup factor
dc.subjectGamma-ray
dc.subjectEnergy absorption
dc.subjectThermo luminescence dosimetry
dc.subjectNeural network
dc.subjectGeometrical progression
dc.subjectTraining algorithms
dc.subject100 mfp
dc.subjectApproximation
dc.subjectTechnologies
dc.subjectPrediction
dc.subjectParameters
dc.subjectSignals
dc.subjectDepths
dc.subjectDosimetry
dc.subjectEnergy absorption
dc.subjectNeural networks
dc.subjectThermoluminescence
dc.subjectBuildup factor
dc.subjectComputational effort
dc.subjectIncident photon energy
dc.subjectInterpolation method
dc.subjectLevenberg-Marquardt learning algorithms
dc.subjectMulti-layer perceptron neural networks
dc.subjectMulti-layered Perceptron
dc.subjectThermoluminescence dosimetry
dc.subjectGamma rays
dc.subject.emtreeBeryllium oxide
dc.subject.emtreeBorate sodium
dc.subject.emtreeCalcium phosphate
dc.subject.emtreeCalcium sulfate
dc.subject.emtreeChemical compound
dc.subject.emtreeLithium fluoride
dc.subject.emtreeLithium tetraborate
dc.subject.emtreePotassium magnesium trifluoride
dc.subject.emtreeUnclassified drug
dc.subject.emtreeArticle
dc.subject.emtreeArtificial neural network
dc.subject.emtreeChemical analysis
dc.subject.emtreeChemical parameters
dc.subject.emtreeChemical phenomena
dc.subject.emtreeControlled study
dc.subject.emtreeGamma radiation
dc.subject.emtreeGeometric progression fitting formula
dc.subject.emtreeGeometry
dc.subject.emtreeMathematical computing
dc.subject.emtreeMultilayer perceptron neural network
dc.subject.emtreePerceptron
dc.subject.emtreeRadiation absorption
dc.subject.emtreeThermoluminescence dosimetry
dc.subject.scopusRadiation Shield; Gamma Ray; Shielding
dc.subject.wosChemistry, physical
dc.subject.wosNuclear science & technology
dc.subject.wosPhysics, atomic, molecular & chemical
dc.titleModeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study
dc.typeArticle
dc.wos.quartileQ2 (Nuclear science & technology)
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama