Yayın:
Efficient machine learning models for estimation of compressive strengths of zeolite and diatomite substituting concrete in sodium chloride solution

dc.contributor.authorKoçak, Burak
dc.contributor.authorGülbandılar, Eyyüp
dc.contributor.authorKoçak, Yılmaz
dc.contributor.buuauthorÖzcan, Gıyasettin
dc.contributor.buuauthorÖZCAN, GIYASETTİN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Ana Bilim Dalı
dc.contributor.researcheridZ-1130-2018
dc.date.accessioned2025-01-24T12:37:55Z
dc.date.available2025-01-24T12:37:55Z
dc.date.issued2024-04-18
dc.description.abstractThis study implements a set of machine learning algorithms to building material science, which predict the compressive strength of zeolite and diatomite substituting concrete mixes in sodium chloride solution. Particularly, Random Forest, Support Vector Machine, Extreme Gradient Boosting, Light Gradient Boosting, and Categorical Boosting algorithms are exploited and their optimal parameters are tuned. In the training and testing of these models, 28 day, 56 day, and 90 day compressive strength observations of 63 samples of 7 different concrete mixtures substituting Portland cement, zeolite, diatomite, zeolite + diatomite were used. Consequently, compressive strength experimentation results and machine learning predictions were compared through statistical methods such as RMSE, MAPE, and R 2. Results denote that the prediction performance of machine learning is improving with tuned models. Particularly, RMSE, MAPE, R 2 scores of Categorical Boosting are, respectively, 1.15, 1.45%, and 98.03% after parameter tuning design. The results denote that presented machine learning model can provide an advantage in the cost and duration of the compressive strength experiments.
dc.description.sponsorshipDüzce Üniversitesi 2011.03.HD.009
dc.identifier.doi10.1007/s13369-024-09042-1
dc.identifier.endpage14256
dc.identifier.issn2193-567X
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85190793958
dc.identifier.startpage14241
dc.identifier.urihttps://doi.org/10.1007/s13369-024-09042-1
dc.identifier.urihttps://hdl.handle.net/11452/49799
dc.identifier.volume49
dc.identifier.wos001205482600006
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.journalArabian Journal For Science And Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial neural-network
dc.subjectPerformance
dc.subjectPrediction
dc.subjectZeolite
dc.subjectDiatomite
dc.subjectCompressive strength
dc.subjectRandom forest
dc.subjectGradient boosting
dc.subjectMachine learning
dc.subjectScience & technology
dc.subjectMultidisciplinary sciences
dc.titleEfficient machine learning models for estimation of compressive strengths of zeolite and diatomite substituting concrete in sodium chloride solution
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationa91a1293-4e4d-4a70-b56a-1dae0daf40f2
relation.isAuthorOfPublication.latestForDiscoverya91a1293-4e4d-4a70-b56a-1dae0daf40f2

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Ozcan_vd_2024.pdf
Boyut:
1.91 MB
Format:
Adobe Portable Document Format