Publication:
Deep learning-based modulation recognition with constellation diagram: A case study

dc.contributor.authorLeblebici, Merih
dc.contributor.authorCalhan, Ali
dc.contributor.authorCicioğlu, Murtaza
dc.contributor.buuauthorCİCİOĞLU, MURTAZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0000-0002-5657-7402
dc.contributor.researcheridAAL-5004-2020
dc.date.accessioned2025-02-10T06:03:10Z
dc.date.available2025-02-10T06:03:10Z
dc.date.issued2024-01-12
dc.description.abstractAutomatic modulation recognition is a promising solution for identifying and classifying signals received in heterogeneous wireless networks. In dynamic and autonomous environments, receivers must extract the relevant signal from various modulated signals to enable further communication procedures. Machine learning, including its sub-branches for classification problems, offers promising operational capabilities. This study utilized the ResNet-50 deep learning method for modulation classification. A dataset consisting of eight digital modulation techniques was generated, with constellation diagrams created as image data over the additive white Gaussian noise (AWGN) channel at signal-to-noise ratios (SNR) of 5 dB, 10 dB, and 20 dB. The deep learning algorithm's performance metrics were evaluated using a confusion matrix, and F1 scores were compared to those of the AlexNet deep learning algorithm. The simulation results clearly indicate the superior performance of ResNet-50 over AlexNet. In terms of average F1 scores, ResNet-50 exhibits a significant advantage, surpassing AlexNet by approximately 67%, 29%, and 10% at SNR values of 5 dB, 10 dB, and 20 dB, respectively.
dc.description.sponsorshipDüzce Üniversitesi BAP-2023.06.01.1410
dc.identifier.doi10.1016/j.phycom.2024.102285
dc.identifier.issn1874-4907
dc.identifier.scopus2-s2.0-85182504603
dc.identifier.urihttps://doi.org/10.1016/j.phycom.2024.102285
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S187449072400003X
dc.identifier.urihttps://hdl.handle.net/11452/50218
dc.identifier.volume63
dc.identifier.wos001165166000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalPhysical Communication
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectClassification
dc.subjectNetworks
dc.subjectModulation recognition
dc.subjectDeep learning
dc.subjectConstellation diagram
dc.subjectResnet-50
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, electrical & electronic
dc.subjectTelecommunications
dc.subjectEngineering
dc.titleDeep learning-based modulation recognition with constellation diagram: A case study
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication44bc36d2-0d2c-4f60-aed7-11bf3e17b449
relation.isAuthorOfPublication.latestForDiscovery44bc36d2-0d2c-4f60-aed7-11bf3e17b449

Files