Publication:
Psl(2, r) grubu ve ayrık alt grupları

dc.contributor.advisorBizim, Osman
dc.contributor.authorÇakırtaş, Şerife
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-3515-6975
dc.date.accessioned2020-06-19T06:17:33Z
dc.date.available2020-06-19T06:17:33Z
dc.date.issued2019-09-27
dc.description.abstractBu çalışmada PSL(2, R) ve bu grubun ayrık alt gruplarının özellikleri ele alınmıştır. Bu grup ve hiperbolik geometri arasındaki ilişki üzerinde durulmuştur. PSL(2, R) grubunun ayrık alt grupları olan Fuchs grupları ve modüler grubun cebirsel yapıları ele alınmıştır. Çalışmanın ikinci bölümünde, daha sonra ihtiyaç duyulacak olan bazı tanım ve teoremler verilmiştir. Dördüncü bölümde PSL(2, R) grubunun özellikleri ele alınmış ve bu grubun üst yarı düzlem üzerindeki hareketi incelenmiştir. Bu bölümde hiperbolik geometrinin üst yarı düzlem modeli oluşturulmuş ve PSL(2, R) deki dönüşümlerin hiperbolik uzaklığı ve hiperbolik alanı değişmez bıraktığı görülmüştür. Beşinci bölümde PSL(2, R) grubunun ayrık alt grupları olan Fuchs grupları incelenmiştir. Bu gruplar için temel bölge ve döşeme kavramları ele alınmıştır. Fuchs gruplarının bölüm uzayları oluşturulmuş ve bu bölüm uzayları ile kompakt Riemann yüzeyleri arasındaki ilişki incelenmiştir. Son bölümde modüler grup ele alınmıştır. Modüler grubun üreteçleri, temel bölgesi ve temsili verilmiştir.
dc.description.abstractIn this work, the discussed the properties of the group PSL(2, R) and its discrete subgroups. We considered the relation between this group and hyperbolic geometry. Moreover, we studied algebraic structures of Fuchsian groups which are discrete subgroups of PSL(2, R) and modular group. In the second chapter, some definitions and theorems which will be used later in the work are given. In the fourth chapter, the properties of PSL(2, R) are considered and the action of this group on the upper half plane is studied. In this chapter the upper half plane model of the hyperbolic geometry is constructed. It is seen that the hyperbolic distance and the hyperbolic area are invariant under transformations of PSL(2, R) In the fifth chapter, Fuchsian groups, which are the discrete subgroups of PSL(2, R) are considered. The concept of fundamental regions and tessellations for these groups are given. The quotient spaces of these groups are constructed. The relations between quotient spaces of these groups and compact Riemann surfaces are studied. In the last chapter, the modular group is considered. The generators, fundamental region and representation of the modular group are given.
dc.format.extentVI, 72 sayfa
dc.identifier.citationÇakırtaş, Ş. (2019). Psl(2, r) grubu ve ayrık alt grupları. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/11307
dc.language.isotr
dc.publisherBursa Uludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPSL(2, R)
dc.subjectFuchsian group
dc.subjectHyperbolic geometry
dc.subjectModular group
dc.subjectFuchs grubu
dc.subjectHiperbolik geometri
dc.subjectModüler grup
dc.titlePsl(2, r) grubu ve ayrık alt grupları
dc.title.alternativeThe group psl(2, r) and it's discrete subgroups
dc.typemasterThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Matematik Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
605106.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: