Yayın: Multilayered perceptron neural networks to compute energy losses in magnetic cores
| dc.contributor.buuauthor | Küçük, İlker | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Fizik Bölümü | |
| dc.contributor.scopusid | 6602910810 | |
| dc.date.accessioned | 2022-10-13T11:05:34Z | |
| dc.date.available | 2022-10-13T11:05:34Z | |
| dc.date.issued | 2006 | |
| dc.description.abstract | This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the specific energy losses of toroidal wound cores built from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge electrical steel strips. The MLP has been trained by a back-propagation and extended delta-bar-delta learning algorithm. The results obtained by using the MLP model were compared with a commonly used conventional method. The comparison has shown that the proposed model improved loss estimation with respect to the conventional method. | |
| dc.identifier.citation | Küçük, İ. (2006). ''Multilayered perceptron neural networks to compute energy losses in magnetic cores''. Journal of Magnetism and Magnetic Materials, 307(1), 53-61. | |
| dc.identifier.doi | 10.1016/j.jmmm.2006.03.043 | |
| dc.identifier.endpage | 61 | |
| dc.identifier.issn | 0304-8853 | |
| dc.identifier.issue | 1 | |
| dc.identifier.scopus | 2-s2.0-33748449604 | |
| dc.identifier.startpage | 53 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jmmm.2006.03.043 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0304885306006688 | |
| dc.identifier.uri | http://hdl.handle.net/11452/29084 | |
| dc.identifier.volume | 307 | |
| dc.identifier.wos | 000241144900006 | |
| dc.indexed.wos | SCIE | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.journal | Journal of Magnetism and Magnetic Materials | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Materials science | |
| dc.subject | Physics | |
| dc.subject | Toroidal wound cores | |
| dc.subject | Neural network | |
| dc.subject | Energy losses | |
| dc.subject | Mathematical models | |
| dc.subject | Magnetic properties | |
| dc.subject | Magnetic materials | |
| dc.subject | Learning algorithms | |
| dc.subject | Energy dissipation | |
| dc.subject | Backpropagation | |
| dc.subject | Toroidal wounds | |
| dc.subject | Multilayered perceptrons (MLP) | |
| dc.subject | Delta-bar-delta learnings | |
| dc.subject | Multilayer neural networks | |
| dc.subject | Toroidal cores | |
| dc.subject.scopus | Silicon Steel; Soft Magnetic Materials; Induction Motors | |
| dc.subject.wos | Physics, condensed matter | |
| dc.subject.wos | Materials science, multidisciplinary | |
| dc.title | Multilayered perceptron neural networks to compute energy losses in magnetic cores | |
| dc.type | Article | |
| dc.wos.quartile | Q2 (Materials science, multidisciplinary) | |
| dc.wos.quartile | Q3 (Physics, condensed matter) | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/Fizik Bölümü | |
| local.indexed.at | Scopus | |
| local.indexed.at | WOS |
Dosyalar
Lisanslı seri
1 - 1 / 1
