Yayın:
Multilayered perceptron neural networks to compute energy losses in magnetic cores

dc.contributor.buuauthorKüçük, İlker
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.scopusid6602910810
dc.date.accessioned2022-10-13T11:05:34Z
dc.date.available2022-10-13T11:05:34Z
dc.date.issued2006
dc.description.abstractThis paper presents a new approach based on multilayered perceptrons (MLPs) to compute the specific energy losses of toroidal wound cores built from 3% SiFe 0.27 mm thick M4, 0.1 and 0.08 mm thin gauge electrical steel strips. The MLP has been trained by a back-propagation and extended delta-bar-delta learning algorithm. The results obtained by using the MLP model were compared with a commonly used conventional method. The comparison has shown that the proposed model improved loss estimation with respect to the conventional method.
dc.identifier.citationKüçük, İ. (2006). ''Multilayered perceptron neural networks to compute energy losses in magnetic cores''. Journal of Magnetism and Magnetic Materials, 307(1), 53-61.
dc.identifier.doi10.1016/j.jmmm.2006.03.043
dc.identifier.endpage61
dc.identifier.issn0304-8853
dc.identifier.issue1
dc.identifier.scopus2-s2.0-33748449604
dc.identifier.startpage53
dc.identifier.urihttps://doi.org/10.1016/j.jmmm.2006.03.043
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0304885306006688
dc.identifier.urihttp://hdl.handle.net/11452/29084
dc.identifier.volume307
dc.identifier.wos000241144900006
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.journalJournal of Magnetism and Magnetic Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectToroidal wound cores
dc.subjectNeural network
dc.subjectEnergy losses
dc.subjectMathematical models
dc.subjectMagnetic properties
dc.subjectMagnetic materials
dc.subjectLearning algorithms
dc.subjectEnergy dissipation
dc.subjectBackpropagation
dc.subjectToroidal wounds
dc.subjectMultilayered perceptrons (MLP)
dc.subjectDelta-bar-delta learnings
dc.subjectMultilayer neural networks
dc.subjectToroidal cores
dc.subject.scopusSilicon Steel; Soft Magnetic Materials; Induction Motors
dc.subject.wosPhysics, condensed matter
dc.subject.wosMaterials science, multidisciplinary
dc.titleMultilayered perceptron neural networks to compute energy losses in magnetic cores
dc.typeArticle
dc.wos.quartileQ2 (Materials science, multidisciplinary)
dc.wos.quartileQ3 (Physics, condensed matter)
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama