Yayın: The pell equation x 2-py 2 = Q
| dc.contributor.author | Tekcan, A. | |
| dc.contributor.author | Özkoç, A. | |
| dc.contributor.author | Kocapınar, C. | |
| dc.contributor.author | Alkan, H. | |
| dc.contributor.buuauthor | TEKCAN, AHMET | |
| dc.contributor.buuauthor | Alkan, Hatice | |
| dc.contributor.buuauthor | Özkoç, Arzu | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Ana Bilim Dalı | |
| dc.contributor.scopusid | 55883777900 | |
| dc.contributor.scopusid | 24485340700 | |
| dc.contributor.scopusid | 35761163100 | |
| dc.date.accessioned | 2025-08-06T23:33:08Z | |
| dc.date.issued | 2010-07-01 | |
| dc.description.abstract | Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k 2. In this paper, we consider the integer solutions of the Pell equation x 2-Py 2 = Q over Z and also over finite fields F p. Also we deduce some relations on the integer solutions (x n, y n) of it. | |
| dc.identifier.endpage | 343 | |
| dc.identifier.issn | 2010-376X | |
| dc.identifier.scopus | 2-s2.0-78751630057 | |
| dc.identifier.startpage | 340 | |
| dc.identifier.uri | https://hdl.handle.net/11452/53936 | |
| dc.identifier.volume | 67 | |
| dc.indexed.scopus | Scopus | |
| dc.language.iso | en | |
| dc.relation.journal | World Academy of Science Engineering and Technology | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Solutions of pell equation | |
| dc.subject | Pell equation | |
| dc.title | The pell equation x 2-py 2 = Q | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 17944028-a562-4782-b38f-cb890c6f31bf | |
| relation.isAuthorOfPublication.latestForDiscovery | 17944028-a562-4782-b38f-cb890c6f31bf |
