Publication:
Cnn-based automatic modulation recognition for index modulation systems

dc.contributor.authorLeblebici, Merih
dc.contributor.authorÇalhan, Ali
dc.contributor.buuauthorCicioğlu, Murtaza
dc.contributor.buuauthorCİCİOĞLU, MURTAZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0000-0002-5657-7402
dc.contributor.researcheridAAL-5004-2020
dc.date.accessioned2024-09-23T05:51:53Z
dc.date.available2024-09-23T05:51:53Z
dc.date.issued2023-11-21
dc.description.abstractAutomatic modulation recognition (AMR) has garnered significant attention in both civilian and military domains, with applications ranging from spectrum sensing and cognitive radio (CR) to the deterrence of adversary communication. Index modulation (IM) represents an innovative digital modulation technique that exploits the indices of parameters of communication systems to transmit extra information bits. This paper aims to examine the performance of a convolutional neural network (CNN)-based AMR across various IM systems, including spatial modulation (SM), quadrature spatial modulation (QSM), and generalized spatial modulation (GSM) with eight digital modulation schemes. In this study, we leverage confusion matrices, receiver operating characteristic (ROC) curves, and F1 scores to illustrate the recognition model's outputs.
dc.description.sponsorshipDüzce Üniversitesi BAP-2023.06.01.1410
dc.identifier.doi10.1016/j.eswa.2023.122665
dc.identifier.issn0957-4174
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2023.122665
dc.identifier.urihttps://hdl.handle.net/11452/45011
dc.identifier.volume240
dc.identifier.wos001125603800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltd
dc.relation.journalExpert Systems With Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSpatial modulation
dc.subjectClassification
dc.subjectPerformance
dc.subjectOfdm
dc.subjectAutomatic modulation recognition
dc.subjectConvolutional neural network
dc.subjectIndex modulation
dc.subjectMachine learning
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, artificial intelligence
dc.subjectEngineering, electrical & electronic
dc.subjectOperations research & management science
dc.subjectComputer science
dc.subjectEngineering
dc.subjectOperations research & management science
dc.titleCnn-based automatic modulation recognition for index modulation systems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
relation.isAuthorOfPublication44bc36d2-0d2c-4f60-aed7-11bf3e17b449
relation.isAuthorOfPublication.latestForDiscovery44bc36d2-0d2c-4f60-aed7-11bf3e17b449

Files

Collections