Yayın:
Prediction of giant magneto impedance on As-cast and post production treated Fe4.3Co68.2Si12.5B15 amorphous wires using neural network

dc.contributor.buuauthorÇaylak, Osman
dc.contributor.buuauthorDerebaşı, Naim
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.researcheridAAI-2254-2021
dc.contributor.scopusid18036806100
dc.contributor.scopusid11540936300
dc.date.accessioned2024-03-18T10:55:35Z
dc.date.available2024-03-18T10:55:35Z
dc.date.issued2008-11
dc.descriptionBu çalışma, 07-09 Haziran 2008 tarihleri arasında Constanta[Romanya]’da düzenlenen 9. International Balkan Workshop on Applied Physics bildiri olarak sunulmuştur.
dc.description.abstractA giant magneto impedance effect was experimentally measured on as-cast and post production treated amorphous wires although it takes some time due to varying measuring condition such as sample, static magnetic field and frequency. Measured data from different as-cast and post production treated samples was used for training of the network. A 3-node input layer, 1-node output layer neural network model with 3 hidden layers and full connectivity between nodes were developed. A total of 1600 input vectors obtained from varied samples were available in the training set. The network was formed by hybrid transfer functions and 21 numbers of nodes in the hidden layers, after the performance of many models were tried. A set of test data, different from the training data set was used to investigate the network performance. The average correlation and prediction error of giant magneto impedance effect were found to be 99% and 1% for tested Fe4.3Co68.2 Si12.5B15 amorphous wires.
dc.identifier.citationÇaylak, O. ve Derebaşı, N. (2008). "Prediction of giant magneto impedance on As-cast and post production treated Fe4.3Co68.2Si12.5B15 amorphous wires using neural network". Journal of Optoelectronics and Advanced Materials, 10(11), 2916-2918.
dc.identifier.endpage2918
dc.identifier.issn1454-4164
dc.identifier.issn1841-7132
dc.identifier.issue11
dc.identifier.scopus2-s2.0-57349200623
dc.identifier.startpage2916
dc.identifier.urihttps://hdl.handle.net/11452/40454
dc.identifier.volume10
dc.identifier.wos000261348200016
dc.indexed.scopusScopus
dc.indexed.wosSCIE
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherNatl Inst Optoelectronics
dc.relation.journalJournal of Optoelectronics and Advanced Materials
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMaterials science
dc.subjectOptics
dc.subjectPhysics
dc.subjectAmorphous wire
dc.subjectArtificial neural network
dc.subjectGiant magneto impedance
dc.subjectCobalt compounds
dc.subjectIron compounds
dc.subjectMagnetic anisotropy
dc.subjectMultilayer neural networks
dc.subjectNetwork layers
dc.subjectNeural networks
dc.subjectSilicon compounds
dc.subjectStatistical tests
dc.subjectWire
dc.subjectAmorphous wire
dc.subjectCorrelation and prediction
dc.subjectFull connectivities
dc.subjectGiant magneto impedance
dc.subjectGiant magneto impedance effect
dc.subjectMeasuring conditions
dc.subjectNeural network model
dc.subjectStatic magnetic fields
dc.subjectBoron compounds
dc.subjectDual-phase steels
dc.subjectMartensite
dc.subjectTensile
dc.subjectMicrostructure
dc.subjectMorphology
dc.subject.scopusFerrite; Martensite; Dp600
dc.subject.wosMaterials science, multidisciplinary
dc.subject.wosOptic
dc.subject.wosPhysics, applied
dc.titlePrediction of giant magneto impedance on As-cast and post production treated Fe4.3Co68.2Si12.5B15 amorphous wires using neural network
dc.typeconferenceObject
dc.type.subtypeProceedings Paper
dc.wos.quartileQ3
dc.wos.quartileQ4 (Physics, applied)
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Fizik Bölümü
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama