Yayın:
An artificial intelligence-based approach with photoplethysmogram and heart rate variability for sleep bruxism diagnosis

dc.contributor.authorRecep Bozkurt, Mehmet
dc.contributor.authorBilgin, Cahit
dc.contributor.buuauthorBULUT ERİŞ, SEVAL
dc.contributor.buuauthorERİŞ, ÖMER
dc.contributor.departmentİnegöl Meslek Yüksekokulu
dc.contributor.departmentElektrik ve Enerji Bölümü
dc.contributor.researcheridGMK-1873-2022
dc.date.accessioned2025-10-21T09:13:44Z
dc.date.issued2025-01-01
dc.description.abstractBruxism is jaw muscle activity that can cause functional and aesthetic changes in the jaw and dental structures of individuals. It can be observed during sleep or while awake. Owing to the disadvantages of using polysomnography (PSG) for the definitive diagnosis of bruxism, it is important to develop alternative and reliable diagnostic systems. In this study, we propose a noninvasive and practical solution for diagnosing sleep bruxism using photoplethysmogram (PPG) and heart rate variability (HRV). We created a database by extracting features from PPG and HRV. We used Principal Component Analysis (PCA) to reduce the data size and Fisher's feature selection algorithm to identify the most important features. Using four artificial intelligence (AI) algorithms, we built classification models that distinguished bruxism labels from control labels. The models were optimized and tested using unseen data. We evaluated the performance of the models using six criteria and validated them using leave-one-out (LOO). Singular Value Decomposition (SVD) of HRV is the most important biomarker for separating bruxism from control data. In addition, the durations of the falling and rising edges of the PPG and the amplitude values of these durations in some percentiles are also important for increasing classification success. The results, methodology used, and easy acquisition of PPG and HRV make it possible to apply the proposed model to embedded systems. The use of the proposed model in clinical evaluation provides significant advantages. This study is innovative in the literature and sheds light on future studies.
dc.identifier.doi10.1109/ACCESS.2025.3546720
dc.identifier.endpage40428
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-105001061411
dc.identifier.startpage40413
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2025.3546720
dc.identifier.urihttps://hdl.handle.net/11452/55916
dc.identifier.volume13
dc.identifier.wos001446493800045
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherIeee-inst electrical electronics engineers inc
dc.relation.journalIeee access
dc.subjectMachıne learnıng-model
dc.subjectMandıbular movements
dc.subjectPpg
dc.subjectArousals
dc.subjectSıgnals
dc.subjectApnea
dc.subjectECG
dc.subjectEpıdemıology
dc.subjectSelectıon
dc.subjectEvents
dc.subjectSleep
dc.subjectElectromyography
dc.subjectHeart rate variability
dc.subjectRecording
dc.subjectElectrocardiography
dc.subjectAccuracy
dc.subjectSupport vector machines
dc.subjectFeature extraction
dc.subjectElectroencephalography
dc.subjectMuscles
dc.subjectArtificial intelligence
dc.subjectBiomarkers
dc.subjectFeature extraction
dc.subjectFeature selection
dc.subjectHeart rate variability
dc.subjectLeave-one-out
dc.subjectMachine learning
dc.subjectPhotoplethysmogram
dc.subjectPrincipal component analysis
dc.subjectSleep bruxism
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectComputer Science, Information Systems
dc.subjectEngineering, Electrical & Electronic
dc.subjectComputer Science
dc.subjectEngineering
dc.subjectTelecommunications
dc.titleAn artificial intelligence-based approach with photoplethysmogram and heart rate variability for sleep bruxism diagnosis
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentİnegöl Meslek Yüksekokulu/Elektrik ve Enerji Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationcf50cf44-c3b8-4656-a50f-adc0db2a5031
relation.isAuthorOfPublication100f4d08-f01e-4fb3-8611-9b5bd52fbf08
relation.isAuthorOfPublication.latestForDiscoverycf50cf44-c3b8-4656-a50f-adc0db2a5031

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Eris_vd_2025.pdf
Boyut:
4.43 MB
Format:
Adobe Portable Document Format