Yayın: A neural network-based tool for magnetic performance prediction of toroidal cores
| dc.contributor.author | Miti, G.K. | |
| dc.contributor.author | Moses, Anthony John | |
| dc.contributor.author | Fox, David | |
| dc.contributor.buuauthor | Derebaşı, Naim | |
| dc.contributor.department | Fen Edebiyat Fakültesi | |
| dc.contributor.department | Fizik Bölümü | |
| dc.contributor.scopusid | 11540936300 | |
| dc.date.accessioned | 2022-03-23T07:19:11Z | |
| dc.date.available | 2022-03-23T07:19:11Z | |
| dc.date.issued | 2003-01 | |
| dc.description | Bu çalışma, 05-07 Eylül 2001 tarihleri arasında Bilbao[İspanya]’da düzenlenen 15. International Symposium on Soft Magnetic Materials’da bildiri olarak sunulmuştur. | |
| dc.description.abstract | Geometrical and building parameters have a strong influence on magnetic performance of wound toroidal cores made from electrical steel or similar strip products. This paper presents a neural network-based approach to predict losses and permeability in such cores of varying geometries over an induction range of 0.2-1.8T (50Hz). The approach is shown to be successful. | |
| dc.description.sponsorship | MCYT, Gobierno Espanol | |
| dc.description.sponsorship | Engineering and Physical Sciences Research Council GR/L36093/01 | |
| dc.description.sponsorship | Univ Investigac, Dept Educ | |
| dc.description.sponsorship | Univ Paris Vasco, Euskal Herriko Unibertsitatea | |
| dc.description.sponsorship | Real Soc Bascongada Amigos Pais | |
| dc.description.sponsorship | Agilent Technologies | |
| dc.description.sponsorship | BFI, Optilas | |
| dc.identifier.citation | Miti, G. K. vd. (2003). “A neural network-based tool for magnetic performance prediction of toroidal cores”. Journal of Magnetism and Magnetic Materials, 254(Special Issue), 262-264. | |
| dc.identifier.doi | 10.1016/S0304-8853(02)00788-6 | |
| dc.identifier.endpage | 264 | |
| dc.identifier.issn | 0304-8853 | |
| dc.identifier.issue | Special Issue | |
| dc.identifier.scopus | 2-s2.0-0037211428 | |
| dc.identifier.startpage | 262 | |
| dc.identifier.uri | https://doi.org/10.1016/S0304-8853(02)00788-6 | |
| dc.identifier.uri | http://hdl.handle.net/11452/25292 | |
| dc.identifier.volume | 254 | |
| dc.identifier.wos | 000180075600081 | |
| dc.indexed.wos | SCIE | |
| dc.indexed.wos | CPCIS | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.collaboration | Yurt dışı | |
| dc.relation.journal | Journal of Magnetism and Magnetic Materials | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Materials science | |
| dc.subject | Physics | |
| dc.subject | Artificial intelligence | |
| dc.subject | Magnetic losses | |
| dc.subject | Neural networks | |
| dc.subject | Soft magnetic materials | |
| dc.subject | Strip-wound cores | |
| dc.subject | Magnetic leakage | |
| dc.subject | Magnetic permeability | |
| dc.subject | Toroidal cores | |
| dc.subject | Magnetic cores | |
| dc.subject.scopus | Silicon Steel; Soft Magnetic Materials; Iron | |
| dc.subject.wos | Materials science, multidisciplinary | |
| dc.subject.wos | Physics, condensed matter | |
| dc.title | A neural network-based tool for magnetic performance prediction of toroidal cores | |
| dc.type | conferenceObject | |
| dc.type.subtype | Proceedings Paper | |
| dc.wos.quartile | Q2 (Materials science, multidisciplinary) | |
| dc.wos.quartile | Q3 (Physics, condensed matter) | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen Edebiyat Fakültesi/Fizik Bölümü | |
| local.indexed.at | Scopus | |
| local.indexed.at | WOS |
Dosyalar
Lisanslı seri
1 - 1 / 1
