Publication:
A third-order nonlinear Schrodinger equation: The exact solutions, group-invariant solutions and conservation laws

dc.contributor.authorSeadawy, Aly
dc.contributor.buuauthorÖzkan, Yeşim Sağlam
dc.contributor.buuauthorYaşar, Emrullah
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMatematik
dc.contributor.orcid0000-0002-1364-5137
dc.contributor.orcid0000-0003-4732-5753
dc.contributor.researcheridG-5333-2017
dc.contributor.researcheridAAG-9947-2021
dc.contributor.scopusid57220153585
dc.contributor.scopusid23471031300
dc.date.accessioned2022-11-21T10:29:00Z
dc.date.available2022-11-21T10:29:00Z
dc.date.issued2020-03-17
dc.description.abstractIn this study, we consider the third order nonlinear Schrodinger equation (TONSE) that models the wave pulse transmission in a time period less than one-trillionth of a second. With the help of the extended modified method, we obtain numerous exact travelling wave solutions containing sets of generalized hyperbolic, trigonometric and rational solutions that are more general than classical ones. Secondly, we construct the transformation groups which left the equations invariant and vector fields with the Lie symmetry groups approach. With the help of these vector fields, we obtain the symmetry reductions and exact solutions of the equation. The obtained group-invariant solutions are Jacobi elliptic function and exponential type. We discuss the dynamic behaviour and structure of the exact solutions for distinct solutions of arbitrary constants. Lastly, we obtain conservation laws of the considered equation by construing the complex equation as a system of two real partial differential equations (PDEs).
dc.identifier.citationSeadawy, A. vd. (2020). "A third-order nonlinear Schrödinger equation: The exact solutions, group-invariant solutions and conservation laws". Journal of Taibah University for Science, 14(1), 585-597.
dc.identifier.endpage597
dc.identifier.issn0025-5300
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85086651051
dc.identifier.startpage585
dc.identifier.urihttps://doi.org/10.1080/16583655.2020.1760513
dc.identifier.urihttps://www.degruyter.com/document/doi/10.3139/120.111478/html
dc.identifier.urihttp://hdl.handle.net/11452/29515
dc.identifier.volume14
dc.identifier.wos000530988700001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalJournal of Taibah University for Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDispersive dielectrict fibers
dc.subjectOptical solution-solutions
dc.subjectTransmission
dc.subjectBright
dc.subjectPulses
dc.subjectHarris hawks algorithm
dc.subjectSimulated annealing
dc.subjectCrash analysis
dc.subjectHybrid optimization algorithm
dc.subjectGuardrails
dc.subjectRoad safety barriers
dc.subjectParticle swarm optimization
dc.subjectOptimal machining parameters
dc.subjectStructural design
dc.subjectMultiobjective optimization
dc.subjectDifferential evolution
dc.subjectGenetic algorithm
dc.subjectGravitational search
dc.subjectGlobal optimization
dc.subjectImmune algorithm
dc.subjectOptimum design
dc.subject.scopusHirota Method; Nonlinear Schrödinger Equation; Soliton Solution
dc.subject.wosMultidisciplinary sciences
dc.titleA third-order nonlinear Schrodinger equation: The exact solutions, group-invariant solutions and conservation laws
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Matematik
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Özkan_vd_2020.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: