Publication:
Enhancing municipal solid waste management efficiency through clustering: A case study

dc.contributor.authorÇil, Sedat
dc.contributor.authorKaraer, Feza
dc.contributor.authorSalihoğlu, N. Kamil
dc.contributor.authorTabansız-Göç, Gülveren
dc.contributor.authorCavdur, Fatih
dc.contributor.buuauthorÇil, Sedat
dc.contributor.buuauthorKARAER, FEZA
dc.contributor.buuauthorSALİHOĞLU, NEZİH KAMİL
dc.contributor.buuauthorÇAVDUR, FATİH
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentÇevre Mühendisliği Bölümü
dc.contributor.orcid0000-0001-6802-6328
dc.contributor.researcheridLWL-1722-2024
dc.contributor.researcheridLWJ-2956-2024
dc.contributor.researcheridAAG-9413-2021
dc.contributor.researcheridAAH-3984-2021
dc.date.accessioned2025-01-29T06:00:49Z
dc.date.available2025-01-29T06:00:49Z
dc.date.issued2024-12-31
dc.description.abstractThis study leverages real-time datasets generated through IoT technology and smart city applications to enhance solid waste management in Yalova Province, Turkey. By integrating these datasets with the municipality's Geographic Information System (GIS) using the ITRF/96 3 UTM X Y Coordinate System, a dynamic waste collection framework was established. The K-Means clustering algorithm was employed to determine the optimal waste container placement, considering capacities of 550, 800, 1,000, and 3,000 liters and walking distances of 50-100 ms. Results indicated that 1,000 and 3,000-liter containers with a 100-m walking distance maximized collection efficiency. Replacing 484 traditional containers with 105 units of 3,000 liters reduced total routes by 34%, transport costs by 42.2%, and CO2 emissions by 33.5%. The study underscores the importance of integrating GIS and IoT technologies for real-time waste management, aligning with the UN's Sustainable Development Goals (SDG 11 and SDG 13). By combining data-driven decision-making with urban sustainability practices, it offers a replicable model for municipalities seeking to reduce costs and environmental impacts in waste collection.
dc.description.sponsorshipYalova Municipality
dc.identifier.doi10.1080/15567036.2024.2435540
dc.identifier.endpage17314
dc.identifier.issn1556-7036
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85211112026
dc.identifier.startpage17304
dc.identifier.urihttps://doi.org/10.1080/15567036.2024.2435540
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/15567036.2024.2435540
dc.identifier.urihttps://hdl.handle.net/11452/49886
dc.identifier.volume46
dc.identifier.wos001369524300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTaylor & Francis Inc
dc.relation.journalEnergy Sources Part A-Recovery Utilization and Environmental Effects
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak119C152
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAlgorithm
dc.subjectClustering
dc.subjectMunicipal solid waste management
dc.subjectOptimization
dc.subjectSmart city
dc.subjectSustainability
dc.subjectEnergy & fuels
dc.subjectEngineering
dc.subjectEnvironmental sciences & ecology
dc.titleEnhancing municipal solid waste management efficiency through clustering: A case study
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Çevre Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationcae5c829-2fac-4ea7-9a0d-748f84a00ebd
relation.isAuthorOfPublication0eb38050-d0fe-4aa8-8ed9-ab965ef7a451
relation.isAuthorOfPublication488d40a8-9d9d-4814-89f3-0a6433d547cc
relation.isAuthorOfPublication.latestForDiscoverycae5c829-2fac-4ea7-9a0d-748f84a00ebd

Files