Yayın:
Automatic new topic identification using multiple linear regression

dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.departmentMühendislik Mimarlık Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridAAH-4480-2021
dc.contributor.scopusid6603660605
dc.date.accessioned2021-10-01T11:42:20Z
dc.date.available2021-10-01T11:42:20Z
dc.date.issued2006
dc.description.abstractThe purpose of this study is to provide automatic new topic identification of search engine query logs, and estimate the effect of statistical characteristics of search engine queries on new topic identification. By applying multiple linear regression and multi-factor ANOVA on a sample data log from the Excite search engine, we demonstrated that the statistical characteristics of Web search queries, such as time interval, search pattern and position of a query in a user session, are effective on shifting to a new topic. Multiple linear regression is also a successful tool for estimating topic shifts and continuations. The findings of this study provide statistical proof for the relationship between the non-semantic characteristics of Web search queries and the occurrence of topic shifts and continuations.
dc.identifier.citationÖzmutlu, S. (2006). ''Automatic new topic identification using multiple linear regression''. Automatic new topic identification using multiple linear regression, 42(4), 934-950.
dc.identifier.doi10.1016/j.ipm.2005.10.002
dc.identifier.endpage950
dc.identifier.issn0306-4573
dc.identifier.issn1873-5371
dc.identifier.issue4
dc.identifier.scopus2-s2.0-29244483716
dc.identifier.startpage934
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0306457305001378
dc.identifier.urihttps://doi.org/10.1016/j.ipm.2005.10.002
dc.identifier.urihttp://hdl.handle.net/11452/22183
dc.identifier.volume42
dc.identifier.wos000236006600005
dc.indexed.wosSCIE
dc.indexed.wosSSCI
dc.language.isoen
dc.publisherElsevier Science
dc.relation.journalInformation Processing and Management
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectInformation science & library science
dc.subjectInformation analysis
dc.subjectTopic identification
dc.subjectInformation retrievals
dc.subjectSearch engine
dc.subjectRegression analysis
dc.subjectRegression
dc.subjectSearch engines
dc.subjectInformation retrieval
dc.subjectSemantic
dc.subjectANOVA
dc.subjectMultiple linear regression
dc.subjectFMSS
dc.subjectTopic identification
dc.subjectMinimizing mean flowtime
dc.subjectWeb search queries
dc.subjectLife
dc.subjectIdentification (control systems)
dc.subjectUsers
dc.subjectReaL-time methodology
dc.subjectInformation-seeking
dc.subjectTrends
dc.subjectUsers
dc.subjectAutomatic programming
dc.subjectData reduction
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosComputer science, information systems
dc.subject.wosInformation science & library science
dc.titleAutomatic new topic identification using multiple linear regression
dc.typeArticle
dc.wos.quartileQ2 (Computer science, information systems)
dc.wos.quartileQ1 (Information science & library science)
dspace.entity.typePublication
local.contributor.departmentMühendislik Mimarlık Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama