Yayın: Dairesel olmayan kesitlerin burulmalı titreşimi ve bir delikli nano kirişin stabilite analizlerinin yüksek mertebeden elastisite teorileri kullanılarak incelenmesi
Dosyalar
Tarih
Kurum Yazarları
Yazarlar
Ünal, Yunus
Danışman
Yaylı, M. Özgür
Dil
Türü
Yayıncı:
Bursa Uludağ Üniversitesi
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
Bu çalışmada, nano ölçekli yapı elemanlarının mekanik davranışlarının açıklanmasında klasik elastisite teorilerinin yetersizliği göz önünde bulundurularak, yüksek mertebeden elastisite teorileri esas alınmıştır. Bu kapsamda, delikli nanokirişlerin stabilite analizi ile dairesel olmayan kesitli nanokirişlerin burulmalı titreşim davranışları incelenmiştir. Delikli nanokirişlerin stabilite analizinde, yerel olmayan gerinim gradyanı elastisite teorisi çerçevesinde deliklerin sayısı, konumu ve geometrisinin kritik burkulma yükleri üzerindeki etkileri araştırılmıştır. Üçgen ve eliptik gibi dairesel olmayan kesit geometrilerine sahip nanokirişler ise yerel olmayan elastisite teorisi kapsamında, farklı sınır koşulları altında ve çarpılma fonksiyonları dikkate alınarak değerlendirilmiştir. Çözüm sürecinde Fourier serisi yaklaşımı kullanılmış; sınır koşulları Stokes dönüşümü aracılığıyla diferansiyel denklemlere dâhil edilmiştir. Bu yöntemle elde edilen matris sistemi özdeğer analizine tabi tutulmuştur. Analizler sonucunda, deliklerin nanokirişlerin stabilite davranışı üzerinde belirgin etkiler yarattığı, ayrıca yerel olmayan parametrenin artmasıyla kritik burkulma yüklerinin azaldığı görülmüştür. Dairesel olmayan kesitli nanokirişlerin burulmalı titreşim analizinde ise kesit geometrisinin doğal frekanslar üzerinde belirleyici rol oynadığı ortaya konmuştur. Elde edilen bulgular, hem delikli nanokirişlerin stabilite özelliklerinin hem de dairesel olmayan kesitlerin burulmalı titreşim davranışlarının nano ölçekli cihaz tasarımları açısından kritik öneme sahip olduğunu göstermektedir. Bu bağlamda, çalışmanın özellikle NanoElektromekanik Sistemler (NEMS), nanosensörler ve nanoelektronik sistemlerin güvenilir tasarımına mühendislik açısından önemli katkılar sunacağı düşünülmektedir.
In this study, considering the inadequacy of classical elasticity theories in explaining the mechanical behavior of nano-scale structural elements, higher-order elasticity theories were adopted. Within this scope, the stability analysis of perforated nanobeams and the torsional vibration behavior of nanobeams with non-circular cross-sections were investigated. In the stability analysis of perforated nanobeams, the effects of the number, location, and geometry of the holes on the critical buckling loads were investigated within the framework of the nonlocal strain gradient elasticity theory. Nanobeams with noncircular cross-section geometries, such as triangular and elliptical, were evaluated under different boundary conditions and considering warping functions within the scope of nonlocal elasticity theory. The Fourier series approach was used in the solution process; boundary conditions were incorporated into differential equations via the Stokes transformation. The matrix system obtained by this method was subjected to eigenvalue analysis. The analyses revealed that holes have a significant effect on the stability behavior of nanobeams and that critical buckling loads decrease with increasing nonlocal parameters. In the torsional vibration analysis of non-circular cross-section nanobeams, it has been demonstrated that the cross-section geometry plays a decisive role in determining natural frequencies. The findings reveal that both the stability characteristics of perforated nanobeams and the torsional vibration behavior of non-circular cross-sections are of critical importance for nano-scale device designs. In this context, it is believed that the study will make significant engineering contributions to the reliable design of Nano-Electro-Mechanical Systems (NEMS), nanosensors, and nanoelectronic systems.
In this study, considering the inadequacy of classical elasticity theories in explaining the mechanical behavior of nano-scale structural elements, higher-order elasticity theories were adopted. Within this scope, the stability analysis of perforated nanobeams and the torsional vibration behavior of nanobeams with non-circular cross-sections were investigated. In the stability analysis of perforated nanobeams, the effects of the number, location, and geometry of the holes on the critical buckling loads were investigated within the framework of the nonlocal strain gradient elasticity theory. Nanobeams with noncircular cross-section geometries, such as triangular and elliptical, were evaluated under different boundary conditions and considering warping functions within the scope of nonlocal elasticity theory. The Fourier series approach was used in the solution process; boundary conditions were incorporated into differential equations via the Stokes transformation. The matrix system obtained by this method was subjected to eigenvalue analysis. The analyses revealed that holes have a significant effect on the stability behavior of nanobeams and that critical buckling loads decrease with increasing nonlocal parameters. In the torsional vibration analysis of non-circular cross-section nanobeams, it has been demonstrated that the cross-section geometry plays a decisive role in determining natural frequencies. The findings reveal that both the stability characteristics of perforated nanobeams and the torsional vibration behavior of non-circular cross-sections are of critical importance for nano-scale device designs. In this context, it is believed that the study will make significant engineering contributions to the reliable design of Nano-Electro-Mechanical Systems (NEMS), nanosensors, and nanoelectronic systems.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Nanokiriş, Yüksek mertebeden elastisite teorileri, Dairesel olmayan kesit, Burulma titreşimi, Çarpılma fonksiyonu, Nanobeam, Higher-order elasticity theories, Non-circular cross-section, Torsional vibration, Warping function
