Yayın:
Investigation of the impact of clinker grinding conditions on energy consumption and ball fineness parameters using statistical and machine learning approaches in a bond ball mill

dc.contributor.authorKaya, Yahya
dc.contributor.authorKobya, Veysel
dc.contributor.authorTabansiz-Goc, Gulveren
dc.contributor.authorMardani, Naz
dc.contributor.authorCavdur, Fatih
dc.contributor.authorMardani, Ali
dc.contributor.buuauthorKOBYA, VEYSEL
dc.contributor.buuauthorMARDANİ, ALİ
dc.contributor.buuauthorÇAVDUR, FATİH
dc.contributor.buuauthorMardani, Naz
dc.contributor.buuauthorKaya, Yahya
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.contributor.departmentEğitim Fakültesi
dc.contributor.departmentMatematik ve Fen Bilimleri Eğitimi Ana Bilim Dalı
dc.contributor.orcid0000-0003-0326-5015
dc.contributor.researcheridNYT-2369-2025
dc.contributor.researcheridLUY-6999-2024
dc.contributor.researcheridAAG-9471-2021
dc.contributor.researcheridC-7860-2015
dc.date.accessioned2025-10-14T06:28:58Z
dc.date.issued2025-07-01
dc.description.abstractThis study explores the application of machine learning (ML) techniques-gradient boosting (GB), ridge regression (RR), and support vector regression (SVR)-for estimating the consumption of energy (CE) and Blaine fineness (BF) in cement clinker grinding. This study utilizes key clinker grinding parameters, such as maximum ball size, ball filling ratio, clinker mass, rotation speed, and number of revolutions, as input features. Through comprehensive preprocessing, feature selection methods (mutual info regression (MIR), lasso regression (LR), and sequential backward selection (SBS)) were employed to identify the most significant variables for predicting CE and BF. The performance of the models was optimized using a grid search for hyperparameter tuning and validated using k-fold cross-validation (k = 10). The results show that all ML methods effectively estimated the target parameters, with SVR demonstrating superior accuracy in both CE and BF predictions, as evidenced by its higher R2 and lower error metrics (MAE, MAPE, and RMSE). This research highlights the potential of ML models in optimizing cement grinding processes, offering a novel approach to parameter estimation that can reduce experimental effort and enhance production efficiency. The findings underscore the advantages of SVR, making it the most reliable method for predicting energy consumption and Blaine fineness in clinker grinding.
dc.identifier.doi10.3390/ma18133110
dc.identifier.issue13
dc.identifier.scopus2-s2.0-105010321584
dc.identifier.urihttps://doi.org/10.3390/ma18133110
dc.identifier.urihttps://hdl.handle.net/11452/55546
dc.identifier.volume18
dc.identifier.wos001526374200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalMaterials
dc.subjectSelf-compacting concrete
dc.subjectCompressive strength
dc.subjectSustainable construction
dc.subjectWaste management
dc.subjectPortland-cement
dc.subjectMedia shapes
dc.subjectSelection
dc.subjectRegression
dc.subjectPerformance
dc.subjectPrediction
dc.subjectMachine learning
dc.subjectCement grinding optimization
dc.subjectGradient boosting
dc.subjectRidge regression
dc.subjectSupport vector regression
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMetallurgy & Metallurgical Engineering
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectPhysics
dc.titleInvestigation of the impact of clinker grinding conditions on energy consumption and ball fineness parameters using statistical and machine learning approaches in a bond ball mill
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/ İnşaat Mühendisliği Ana Bilim Dalı
local.contributor.departmentEğitim Fakültesi/Matematik ve Fen Bilimleri Eğitimi Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationa8b5c69d-a587-4680-8a7a-e531e5485cf6
relation.isAuthorOfPublicationdd2de18c-4ec0-4272-8671-0094502e4353
relation.isAuthorOfPublication488d40a8-9d9d-4814-89f3-0a6433d547cc
relation.isAuthorOfPublication.latestForDiscoverya8b5c69d-a587-4680-8a7a-e531e5485cf6

Dosyalar