Yayın:
Final weight prediction from body measurements in Kıvırcık lambs using data mining algorithms

dc.contributor.authorŞengül, Ömer
dc.contributor.authorÇelik, Şenol
dc.contributor.buuauthorŞENGÜL, ÖMER
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentZooteknik Bölümü
dc.contributor.orcid0000-0001-5078-2002
dc.contributor.researcheridAAH-2915-2021
dc.date.accessioned2025-11-06T16:46:54Z
dc.date.issued2025-05-21
dc.description.abstractThis study was carried out to determine the final weight estimation of K & imath;v & imath;rc & imath;k lambs using body measurements via Chi-square automatic interaction detection (CHAID), exhaustive CHAID, classification and regression tree (CART), random forest (RF), multivariate adaptive regression spline (MARS), and bootstrap-aggregating multivariate adaptive regression spline (Bagging MARS) algorithms. For this purpose, height at withers (HW), back height (BH), croup height (CH), chest depth (CD), body length (BL), chest width (CW), and chest circumference (CC) were measured in the lambs. The statistical performances of these algorithms (CHAID, exhaustive CHAID, CART, RF, MARS, and Bagging MARS) were tested by using several goodness-of-fit criteria, namely the coefficient of determination (R-2=0.699, 0.699, 0.722, 0.662, 0.792, and 0.624), adjusted coefficient of determination (Adj.R-2=0.633, 0.633, 0.721, 0.637, 0.768, and 0.609), coefficient of variation (CV % = 6.35 and 5.14, P<0.01), mean square error (MSE = 3.296, 3.296, 2.904, 4.461, 2.277, and 4.121), root mean square error (RMSE = 1.815, 1.815, 1.704, 2.112, 1.509, and 2.030), mean absolute error (MAE = 1.409, 1.409, 1.279, 1.702, 1.193, and 1.628), and mean absolute percentage error (MAPE = 3.925, 3.925, 3.578, 4.002, 3.335, and 3.967), between actual and predicted values of live body weight. With this, the best-fitted MARS model was chosen using cross-validation and user-defined parameter optimization. As a result, it has been shown that it is possible to make a successful estimation of the live weights of lambs by using some of the morphological features of the lambs.
dc.identifier.doi10.5194/aab-68-325-2025
dc.identifier.endpage337
dc.identifier.issn0003-9438
dc.identifier.issue2
dc.identifier.scopus2-s2.0-105005892134
dc.identifier.startpage325
dc.identifier.urihttps://doi.org/10.5194/aab-68-325-2025
dc.identifier.urihttps://hdl.handle.net/11452/56628
dc.identifier.volume68
dc.identifier.wos001492029500001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherCopernicus gesellschaft mbh
dc.relation.journalArchives animal breeding
dc.subjectNeural network
dc.subjectMachine
dc.subjectGrowth
dc.subjectModels
dc.subjectBirth
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectAgriculture, dairy & animal science
dc.subjectAgriculture
dc.titleFinal weight prediction from body measurements in Kıvırcık lambs using data mining algorithms
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Zooteknik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationfc63e8e4-c693-45ab-a51c-a7ed290bf551
relation.isAuthorOfPublication.latestForDiscoveryfc63e8e4-c693-45ab-a51c-a7ed290bf551

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Şengül_Çelik_2025.pdf
Boyut:
1.22 MB
Format:
Adobe Portable Document Format