Yayın:
Application of machine learning methodology for investigating the vibration behavior of functionally graded porous nanobeams

dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.buuauthorTariq, Aiman
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı.
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridAAH-8687-2021
dc.date.accessioned2025-02-06T06:07:03Z
dc.date.available2025-02-06T06:07:03Z
dc.date.issued2024-09-28
dc.description.abstractThis study presents a semi-analytical solution that can calculate the free vibration frequencies of functionally graded nanobeams with three distinct pore distributions under both deformable and rigid boundary conditions, based on nonlocal elasticity and Levinson beam theories. The novelty lies in the incorporation of transverse springs at both ends of porous functionally graded nanobeams and introducing a general eigenvalue problem dependent on the stiffness of these springs. This solution provides vibrational frequencies considering Levinson beam theory, non-local elasticity theory, spring stiffnesses, porosity coefficients, and temperature change. Additionally, the vibrational behavior of these porous nanobeams is explored through machine learning (ML) techniques. Four ML models namely artificial neural network (ANN), support vector regression (SVR), decision tree (DT), and extreme gradient boosting (XGB) are trained to predict the natural frequencies of nanobeams with varying pore distributions. The Sobol quasi-random space-filling method is employed to generate samples by altering input feature combinations for different porous nanobeam distributions. Model performance is evaluated using different performance indicators and visualization tools, with optimal hyperparameters determined via a Bayesian optimization algorithm. Results underscore the efficacy of ML models in predicting natural frequencies, with SVR and ANN demonstrating superior performance compared to XGB and DT. Notably, SVR and ANN exhibit exceptional R2 values of 0.999, along with the lowest MAE, MAPE, and RMSE values among the models assessed. At the end of the study, the effects of various parameters on porous gold (Au) nanobeams using the solution of the presented eigenvalue problem are discussed.
dc.identifier.doi10.1177/03093247241278391
dc.identifier.issn0309-3247
dc.identifier.scopus2-s2.0-85207934464
dc.identifier.urihttps://doi.org/10.1177/03093247241278391
dc.identifier.urihttps://hdl.handle.net/11452/50136
dc.identifier.wos001346152700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSage Publications Ltd
dc.relation.bapFGA-2022-1211
dc.relation.journalJournal Of Strain Analysis For Engineering Design
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNonlocal elasticity
dc.subjectNano-beams
dc.subjectRegression
dc.subjectPlates
dc.subjectModel
dc.subjectPorous nanobeams
dc.subjectLevinson beam theory
dc.subjectVibrational frequencies
dc.subjectMachine learning
dc.subjectBayesian optimization
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, mechanical
dc.subjectMechanics
dc.subjectMaterials science, characterization & testing
dc.subjectEngineering
dc.subjectMechanics
dc.subjectMaterials science
dc.titleApplication of machine learning methodology for investigating the vibration behavior of functionally graded porous nanobeams
dc.typeArticle
dc.type.subtypeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublication.latestForDiscoveryf9782842-abc1-42a9-a3c2-76a6464363be

Dosyalar