Publication:
Bi-univalent functions based on binomial series-type convolution operator related with telephone numbers

dc.contributor.authorVijaya, Kaliappan
dc.contributor.authorMurugusundaramoorthy, Gangadharan
dc.contributor.buuauthorBayram, Hasan
dc.contributor.buuauthorBAYRAM, HASAN
dc.contributor.buuauthorYalçın, Sibel
dc.contributor.buuauthorYALÇIN TOKGÖZ, SİBEL
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Anabilim Dalı.
dc.contributor.orcid0000-0001-8106-6834
dc.contributor.orcid0000-0002-0243-8263
dc.contributor.researcheridJAC-6018-2023
dc.contributor.researcheridAAE-9745-2020
dc.date.accessioned2024-10-16T06:04:59Z
dc.date.available2024-10-16T06:04:59Z
dc.date.issued2023-10-01
dc.description.abstractThis paper introduces two novel subclasses of the function class sigma for bi-univalent functions, leveraging generalized telephone numbers and Binomial series through convolution. The exploration is conducted within the domain of the open unit disk. We delve into the analysis of initial Taylor-Maclaurin coefficients |a2| and |a3|, deriving insights and findings for functions belonging to these new subclasses. Additionally, Fekete-Szego inequalities are established for these functions. Furthermore, the study unveils a range of new subclasses of sigma, some of which are special cases, yet have not been previously explored in conjunction with telephone numbers. These subclasses emerge as a result of hybrid-type convolution operators. Concluding from our results, we present several corollaries, which stand as fresh contributions in the domain of involution numbers involving hybrid-type convolution operators.
dc.identifier.doi10.3390/axioms12100951
dc.identifier.issue10
dc.identifier.urihttps://doi.org/10.3390/axioms12100951
dc.identifier.urihttps://hdl.handle.net/11452/46499
dc.identifier.volume12
dc.identifier.wos001095770800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalAxioms
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBorel distribution
dc.subjectRadius problems
dc.subjectCoefficient
dc.subjectSubclass
dc.subjectUnivalent functions
dc.subjectAnalytic functions
dc.subjectBi-univalent functions
dc.subjectBinomial series
dc.subjectConvolution operator
dc.subjectInvolution numbers
dc.subjectCoefficient bounds
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics, applied
dc.subjectMathematics
dc.titleBi-univalent functions based on binomial series-type convolution operator related with telephone numbers
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication96e061fc-f114-448f-b390-e7b315250ad3
relation.isAuthorOfPublication810440e4-c926-4301-a0cc-b455e6d6e960
relation.isAuthorOfPublication.latestForDiscovery96e061fc-f114-448f-b390-e7b315250ad3

Files

Collections