Yayın:
Analyzing the results of automatic new topic identification

dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.buuauthorCoşar, Gencer
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridAAH-4480-2021
dc.contributor.scopusid6603660605
dc.contributor.scopusid25027011500
dc.date.accessioned2024-02-26T12:08:41Z
dc.date.available2024-02-26T12:08:41Z
dc.date.issued2008
dc.description.abstractPurpose - Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. Recently. various studies have focused on new topic identification/session identification of search engine transaction logs, and several problems regarding the estimation of topic shifts and continuations were observed in these studies. This study aims to analyze the reasons for the problems that were encountered as a result of applying automatic new topic identification. Design/methodology/approach - Measures, such as cleaning the data of coalition words and analyzing the errors of automatic new topic identification, are applied to eliminate the problems in estimating topic shifts mid continuations. Findings - The findings show that the resulting errors of automatic new topic identification have a pattern, and further research is required to improve the performance of automatic new topic identification. Originality/value - Improving the performance of automatic new topic identification would be valuable to search engine designers, so that they can be develop new recommendation algorithms, as well as custom-tailored graphical user interface, for search engine users.
dc.identifier.citationÖzmutlu, S. ve Coşar, G. (2008). "Analyzing the results of automatic new topic identification". Library Hi Tech, 26(3), 466-487.
dc.identifier.doi10.1108/07378830810903373
dc.identifier.endpage487
dc.identifier.issn0737-8831
dc.identifier.issue3
dc.identifier.scopus2-s2.0-52649155940
dc.identifier.startpage466
dc.identifier.urihttps://doi.org/10.1108/07378830810903373
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/07378830810903373/full/html
dc.identifier.urihttps://hdl.handle.net/11452/39971
dc.identifier.volume26
dc.identifier.wos000260565300011
dc.indexed.scopusScopus
dc.indexed.wosSSCI
dc.language.isoen
dc.publisherEmerald Group Publising
dc.relation.journalLibrary Hi Tech
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectInformation science & library science
dc.subjectCluster analysis
dc.subjectError analysis
dc.subjectIdentification
dc.subjectNeural nets
dc.subjectCluster analysis
dc.subjectError analysis
dc.subjectIdentification
dc.subjectNeural nets
dc.subjectWeb
dc.subjectUsers
dc.subject.scopusQuery Reformulation; Image Indexing; Information Retrieval
dc.subject.wosInformation science & library science
dc.titleAnalyzing the results of automatic new topic identification
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama