Yayın:
Enhanced hippopotamus optimization algorithm and artificial neural network for mechanical component design

dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridAAL-9234-2020
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridB-3604-2008
dc.date.accessioned2025-10-21T09:02:23Z
dc.date.issued2025-02-25
dc.description.abstractMetaheuristics have evolved as a strong family of optimization algorithms capable of handling complicated real-world problems that are frequently non-linear, non-convex, and multidimensional in character. These algorithms efficiently explore and take advantage of search areas by imitating natural processes. In addition to introducing a unique modified hippopotamus optimization algorithm (MHOA) in conjunction with artificial neural networks (ANN), this research examines the most recent developments in metaheuristics. By utilizing ANN's adaptive learning processes, MHOA improves on the original hippopotamus optimization algorithm (HOA) in terms of convergence and solution quality. The study uses MHOA to solve a number of engineering design optimization issues, such as gearbox weight reduction, robot gripper design, structural optimization, and piston lever design. When compared to more conventional algorithms, MHOA performs better in terms of accuracy, robustness, and convergence time.
dc.identifier.doi10.1515/mt-2024-0514
dc.identifier.endpage662
dc.identifier.issn0025-5300
dc.identifier.issue4
dc.identifier.scopus2-s2.0-105001207069
dc.identifier.startpage655
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0514
dc.identifier.urihttps://hdl.handle.net/11452/55830
dc.identifier.volume67
dc.identifier.wos001431536700001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de gruyter gmbh
dc.relation.journalMaterials testing
dc.subjectRobot gripper
dc.subjectVehicle spring design
dc.subjectHippopotamus optimization algorithm
dc.subjectReal-world engineering applications
dc.subjectStarfish optimizer
dc.subjectShip rescue optimizer
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science
dc.titleEnhanced hippopotamus optimization algorithm and artificial neural network for mechanical component design
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Yildiz_vd_2025.pdf
Boyut:
1.12 MB
Format:
Adobe Portable Document Format