Publication:
Static and dynamic cell culture of small caliber bilayer vascular grafts electrospun from polycaprolactone

dc.contributor.authorÖztemur, Janset
dc.contributor.authorÖzdemir, Suzan
dc.contributor.authorYalçın-Enis, Ipek
dc.contributor.buuauthorTezcan-Unlu, Havva
dc.contributor.buuauthorÇEÇENER, GÜLŞAH
dc.contributor.buuauthorDoğruok, Yelit Süen
dc.contributor.buuauthorHOCKENBERGER, ASLI
dc.contributor.departmentVeteriner Fakültesi
dc.contributor.departmentTıbbi Biyoloji Ana Bilim Dalı.
dc.contributor.orcid0000-0002-0910-4258
dc.contributor.researcheridGYU-0252-2022
dc.date.accessioned2025-02-07T05:25:21Z
dc.date.available2025-02-07T05:25:21Z
dc.date.issued2024-11-12
dc.description.abstractDeveloping a suitable vascular graft to replace damaged small-caliber vessels and promote tissue regeneration is a critical challenge. This study focuses on bilayer polycaprolactone (PCL) grafts, fabricated by electrospinning, with both randomly distributed and radially oriented fibers. The analysis covers surface morphology, fiber diameter, pore size, cellular behavior, and biodegradability. Human umbilical vein endothelial cells (HUVECs) show an impressive viability of 142.2% after 7 days, while umbilical artery smooth muscle cells (UASMCs) exhibit 112.6%. Fluorescent microscopy indicates a higher viability of HUVECs over UASMCs. On the other hand, less than 10% of HUVECs and less than 5% of UASMCs undergo cell death within 7 days. Biodegradation analysis over 12 months shows a significant weight loss of 65-70% for both types of fiber arrangements. A custom-designed bioreactor enables dynamic cell culture, revealing comparable activity to static cultures. In the dynamic cell culture environment, HUVECs maintain high viability and display robust proliferation at both the 4th and 7th days, supporting the results observed in static cell cultures. These findings underscore the significant potential of bilayer PCL grafts in advancing the field of blood vessels, offering promising avenues for the development of functional vascular replacements with enhanced regenerative capabilities.
dc.identifier.doi10.1080/00914037.2024.2421837
dc.identifier.issn0091-4037
dc.identifier.scopus2-s2.0-85209951937
dc.identifier.urihttps://doi.org/10.1080/00914037.2024.2421837
dc.identifier.urihttps://hdl.handle.net/11452/50194
dc.identifier.wos001357557000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.journalInternational Journal Of Polymeric Materials And Polymeric Biomaterials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak214M089
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSmooth-muscle-cells
dc.subjectMechanical-properties
dc.subjectScaffold
dc.subjectAlignment
dc.subjectPcl
dc.subjectProliferation
dc.subjectDensity
dc.subjectVascular grafts
dc.subjectPolycapralactone
dc.subjectDynamic cell culture
dc.subjectBiomaterials
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectMaterials science, biomaterials
dc.subjectPolymer science
dc.subjectMaterials science
dc.titleStatic and dynamic cell culture of small caliber bilayer vascular grafts electrospun from polycaprolactone
dc.typeArticle
dc.typeEarly Access
dspace.entity.typePublication
local.contributor.departmentVeteriner Fakültesi/Tıbbi Biyoloji Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationae26ce61-4a33-4336-9fe3-b40d1138c397
relation.isAuthorOfPublication6951226a-f371-43af-a0a1-4d7954f06d23
relation.isAuthorOfPublication.latestForDiscoveryae26ce61-4a33-4336-9fe3-b40d1138c397

Files