Yayın:
Tariff-sensitive global supply chains: Semi-markov decision approach with reinforcement learning

dc.contributor.authorYılmaz Eroğlu, Duygu
dc.contributor.buuauthorYILMAZ EROĞLU, DUYGU
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridAAH-1079-2021
dc.date.accessioned2025-10-21T08:56:25Z
dc.date.issued2025-08-01
dc.description.abstractGlobal supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), integrating both currency variability and tariff levels. Using a Q-learning-based method (SMART), we explore three scenarios: (1) wide currency gaps under a uniform tariff, (2) narrowed currency gaps encouraging more local sourcing, and (3) distinct tariff structures that highlight how varying duties can reshape global fulfillment decisions. Beyond these baselines we analyze uncertainty-extended variants and targeted sensitivities (quantity discounts, tariff escalation, and the joint influence of inventory holding costs and tariff costs). Simulation results, accompanied by policy heatmaps and performance metrics, illustrate how small or large shifts in exchange rates and tariffs can alter sourcing strategies, transportation modes, and inventory management. A Deep Q-Network (DQN) is also applied to validate the Q-learning policy, demonstrating alignment with a more advanced neural model for moderate-scale problems. These findings underscore the adaptability of reinforcement learning in guiding practitioners and policymakers, especially under rapidly changing trade environments where exchange rate volatility and incremental tariff changes demand robust, data-driven decision-making.
dc.identifier.doi10.3390/systems13080645
dc.identifier.issue8
dc.identifier.scopus2-s2.0-105014328295
dc.identifier.urihttps://doi.org/10.3390/systems13080645
dc.identifier.urihttps://hdl.handle.net/11452/55784
dc.identifier.volume13
dc.identifier.wos001558227300001
dc.indexed.wosWOS.SSCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalSystems
dc.subjectManagement
dc.subjectGlobal supply chain
dc.subjectSMDP
dc.subjectReinforcement learning
dc.subjectTariff
dc.subjectExchange rate
dc.subjectSocial sciences
dc.subjectSocial sciences, interdisciplinary
dc.subjectSocial sciences - other topics
dc.titleTariff-sensitive global supply chains: Semi-markov decision approach with reinforcement learning
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication7ccd919b-19d3-4812-b2e3-ee4b29f1411b
relation.isAuthorOfPublication.latestForDiscovery7ccd919b-19d3-4812-b2e3-ee4b29f1411b

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Eroğlu_2025.pdf
Boyut:
2.03 MB
Format:
Adobe Portable Document Format