Publication:
Modified forensic-based investigation algorithm for global optimization

dc.contributor.authorKuyu, Yiğit Çağatay
dc.contributor.authorVatansever, Fahri
dc.contributor.buuauthorKUYU, YİĞİT ÇAĞATAY
dc.contributor.buuauthorVATANSEVER, FAHRİ
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0002-3885-8622
dc.contributor.orcid0000-0002-7054-3102
dc.contributor.researcheridAAG-8425-2021
dc.contributor.researcheridAAC-6923-2021
dc.date.accessioned2024-06-03T08:25:14Z
dc.date.available2024-06-03T08:25:14Z
dc.date.issued2021-02-26
dc.description.abstractForensic-based investigation (FBI) is recently developed metaheuristic algorithm inspired by the suspect investigation-location-pursuit operations of police officers. This study focuses on the search processes of the FBI algorithm, called Step A and Step B, to improve and increase its performance. For this purpose, opposition-based learning is adopted to Step A to enhance diversity, while Cauchy-based mutation is integrated with Step B to guide the search to different regions and to jump out of local minima. To show the effectiveness of these improvements, the proposed algorithm has been tested with two different benchmark sets. To verify the performance of the new modified algorithm, the statistical test is carried out on numerical functions. This study also investigates the application of the proposed algorithm to a set of six real-world problems. The proposed and adapted/integrated methods appear to have a significant impact on the FBI algorithm, which augments its performance, resulting in better solutions than the compared algorithms in most of the functions and real-world problems.
dc.identifier.doi10.1007/s00366-021-01322-w
dc.identifier.eissn1435-5663
dc.identifier.endpage3218
dc.identifier.issn0177-0667
dc.identifier.issue4
dc.identifier.startpage3197
dc.identifier.urihttps://doi.org/10.1007/s00366-021-01322-w
dc.identifier.urihttps://link.springer.com/article/10.1007/s00366-021-01322-w
dc.identifier.urihttps://hdl.handle.net/11452/41659
dc.identifier.volume38
dc.identifier.wos000622272400002
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalEngineering With Computers
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDifferential evolution
dc.subjectGlobal optimization
dc.subjectForensic-based investigation algorithm
dc.subjectModified forensic-based investigation algorithm
dc.subjectReal-world problems
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, interdisciplinary applications
dc.subjectEngineering, mechanical
dc.subjectComputer science
dc.subjectEngineering
dc.titleModified forensic-based investigation algorithm for global optimization
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
relation.isAuthorOfPublication04fc60e2-d4a3-4614-b912-4d7d5e1ab573
relation.isAuthorOfPublication32f35813-c6bd-451c-91eb-73aec5e99b0b
relation.isAuthorOfPublication.latestForDiscovery04fc60e2-d4a3-4614-b912-4d7d5e1ab573

Files

Collections