Publication:
Performance of novel thermoelectric cooling module depending on geometrical factors

dc.contributor.authorDerebaşı, Naim
dc.contributor.authorEltez, Muhammed
dc.contributor.authorGüldiken, Fikret
dc.contributor.authorSever, Aziz
dc.contributor.authorKallis, Klaus
dc.contributor.authorKılıç, Halil
dc.contributor.authorÖzmutlu, Emin N.
dc.contributor.buuauthorDEREBAŞI, NAİM
dc.contributor.buuauthorGüldiken, Fikret
dc.contributor.buuauthorÖzmutlu, Emin N.
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Fizik Bölümü.
dc.contributor.orcid0000-0003-2546-0022
dc.contributor.researcheridAAI-2254-2021
dc.contributor.researcheridCRO-8755-2022
dc.contributor.researcheridFPR-2739-2022
dc.date.accessioned2024-08-08T07:31:13Z
dc.date.available2024-08-08T07:31:13Z
dc.date.issued2015-06-01
dc.descriptionBu çalışma, 06-10, Temmuz 2014 tarihlerinde Nashville[Amerika]’da düzenlenen International Conference on Thermoelectrics (ICT) Kongresi‘nde bildiri olarak sunulmuştur.
dc.description.abstractA geometrical shape factor was investigated for optimum thermoelectric performance of a thermoelectric module using finite element analysis. The cooling power, electrical energy consumption, and coefficient of performance were analyzed using simulation with different current values passing through the thermoelectric elements for varying temperature differences between the two sides. A dramatic increase in cooling power density was obtained, since it was inversely proportional to the length of the thermoelectric legs. An artificial neural network model for each thermoelectric property was also developed using input-output relations. The models including the shape factor showed good predictive capability and agreement with simulation results. The correlation of the models was found to be 99%, and the overall prediction error was in the range of 1.5% and 1.0%, which is within acceptable limits. A thermoelectric module was produced based on the numerical results and was shown to be a promising device for use in cooling systems.
dc.description.sponsorshipALDO BW Energy Co.
dc.identifier.doi10.1007/s11664-014-3482-x
dc.identifier.endpage1572
dc.identifier.issn0361-5235
dc.identifier.issue6
dc.identifier.startpage1566
dc.identifier.urihttps://doi.org/10.1007/s11664-014-3482-x
dc.identifier.urihttps://link.springer.com/article/10.1007/s11664-014-3482-x
dc.identifier.urihttps://hdl.handle.net/11452/43797
dc.identifier.volume44
dc.identifier.wos000353813700030
dc.indexed.wosWOS.SCI
dc.indexed.wosWOS.ISTP
dc.language.isoen
dc.publisherSpringer
dc.relation.journalJournal of Electronic Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNeural-network
dc.subjectPrediction
dc.subjectSystem
dc.subjectThermoelectric cooling module
dc.subjectCooling performance
dc.subjectFinite element method
dc.subjectArtificial neural network
dc.subjectEngineering
dc.subjectMaterials science
dc.subjectPhysics
dc.titlePerformance of novel thermoelectric cooling module depending on geometrical factors
dc.typeArticle
dc.typeProceedings Paper
dspace.entity.typePublication
relation.isAuthorOfPublication0c85f61f-70fa-4f0d-83a0-a3a0ac50e069
relation.isAuthorOfPublication.latestForDiscovery0c85f61f-70fa-4f0d-83a0-a3a0ac50e069

Files

Collections