Yayın:
Parameter optimization, microstructural and mechanical properties of fiber laser lap welds of DP1200 steel sheets

dc.contributor.authorAltay, Meryem
dc.contributor.authorAydın, Hakan
dc.contributor.buuauthorALTAY, MERYEM
dc.contributor.buuauthorAYDIN, HAKAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0001-6930-6292
dc.contributor.orcid0000-0001-7364-6281
dc.contributor.researcheridHJR-6250-2023
dc.contributor.researcheridJQB-9181-2023
dc.date.accessioned2025-01-29T05:39:44Z
dc.date.available2025-01-29T05:39:44Z
dc.date.issued2024-05-23
dc.description.abstractIn this research, the effects of laser power, laser welding speed and laser incidence angle were evaluated in terms of weld geometry, microstructure, microhardness, fracture surfaces and tensile shear load in fiber laser welding joints of DP1200 steel sheets. Response Surface Methodology (RSM) was utilized to derive mathematical relationships between the process parameters and the tensile shear load after the tensile test. The optimum combination of process parameters was a laser power of 2800 W, a laser welding speed of 40 mm/s, and a laser incidence angle of 70 degrees . A thermal camera was used to record the laser welding process, and the cooling rates were evaluated by analyzing this data. The influence of cooling rate upon microstructure phase formation for DP1200 steel is investigated, with continuous cooling transformation (CCT) diagrams. Also, post -welding stress and displacement were simulated by Simufact Welding software. At high heat input (55.79 J/mm) occurred coarse dendritic martensitic lath growth while at low heat input (37.6 J/mm) fine dendritic martensitic structure was observed in the weld zone was obtained owing to the high rate of cooling. The microstructure consists of full martensite at a higher than 10 degrees C/s cooling rate. The findings reveal that the phases in FZ and HAZ, the morphology and martensite/bainite constituents differed related to the heat input and laser incidence angle, which ultimately affects the joint 's microhardness, fracture dynamics and tensile shear load.
dc.identifier.doi10.1016/j.measurement.2024.114822
dc.identifier.eissn1873-412X
dc.identifier.issn0263-2241
dc.identifier.scopus2-s2.0-85194132542
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2024.114822
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0263224124007073
dc.identifier.urihttps://hdl.handle.net/11452/49882
dc.identifier.volume235
dc.identifier.wos001245079100001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.bapOUAP (MH) -2019-6
dc.relation.journalMeasurement
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectStrength low-alloy
dc.subjectDual-phase steel
dc.subjectFatigue performance
dc.subjectFracture-behavior
dc.subjectTensile
dc.subjectJoints
dc.subjectDp600
dc.subjectResistance
dc.subjectDp1200 steel sheet
dc.subjectLaser lap welding
dc.subjectOptimisation
dc.subjectResponse surface method
dc.subjectMicrostructure
dc.subjectTensile shear load
dc.subjectMicrohardness
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, multidisciplinary
dc.subjectInstruments & instrumentation
dc.subjectEngineering
dc.titleParameter optimization, microstructural and mechanical properties of fiber laser lap welds of DP1200 steel sheets
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication261b5c52-c730-44a0-bc1b-9126e597ec36
relation.isAuthorOfPublication352791b6-0800-4d9a-8dda-b632faf6068f
relation.isAuthorOfPublication.latestForDiscovery261b5c52-c730-44a0-bc1b-9126e597ec36

Dosyalar