Yayın:
The minimal polynomials of 2cos(π/2k) over the rationals

Placeholder

Tarih

Akademik Birimler

Kurum Yazarları

Demirci, Musa
Özgür, Birsen
Cangül, İsmail Naci

Yazarlar

İkikardeş, Nazlı Y.
Simos, T. E.

Danışman

Dil

Yayıncı:

Amer Inst Pyhsics

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups of the first kind, and in the study of regular polyhedra. Here we obtained the minimal polynomial of this number by means of the better known Chebycheff polynomials and the set of roots on the extension Q(lambda(q)). We follow some kind of inductive method on the number q. The minimal polynomial is obtained for even q.

Açıklama

Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.

Kaynak:

Anahtar Kelimeler:

Konusu

Mathematics, Hecke groups, Roots of unity, Chebycheff polynomials, Minimal polynomial

Alıntı

Demirci, M. vd. (2011). "The minimal polynomials of 2cos(π/2k) over the rationals". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 325-328.

Endorsement

Review

Supplemented By

Referenced By

19

Views

0

Downloads