Yayın: The minimal polynomials of 2cos(π/2k) over the rationals
Tarih
Kurum Yazarları
Demirci, Musa
Özgür, Birsen
Cangül, İsmail Naci
Yazarlar
İkikardeş, Nazlı Y.
Simos, T. E.
Danışman
Dil
Yayıncı:
Amer Inst Pyhsics
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups of the first kind, and in the study of regular polyhedra. Here we obtained the minimal polynomial of this number by means of the better known Chebycheff polynomials and the set of roots on the extension Q(lambda(q)). We follow some kind of inductive method on the number q. The minimal polynomial is obtained for even q.
Açıklama
Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
Kaynak:
Anahtar Kelimeler:
Konusu
Mathematics, Hecke groups, Roots of unity, Chebycheff polynomials, Minimal polynomial
Alıntı
Demirci, M. vd. (2011). "The minimal polynomials of 2cos(π/2k) over the rationals". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 325-328.