Yayın:
Prediction of magnetic properties of strip wound toroidal cores up to 2 kHz using artificial neural network

dc.contributor.authorDerebaşı, Naim
dc.contributor.authorKüçük, İlker
dc.contributor.buuauthorDEREBAŞI, NAİM
dc.contributor.buuauthorKÜÇÜK, İLKER
dc.contributor.departmentFen ve Edebiyat Fakültesi Fizik Bölümü
dc.contributor.scopusid11540936300
dc.contributor.scopusid6602910810
dc.date.accessioned2025-05-13T14:24:48Z
dc.date.issued2003-01-01
dc.description.abstractAlthough magnetic wound cores have simple geometries, their magnetic properties vary in a complex manner depending on core geometry and dimensions etc. These parameters have a strong influence on magnetic performance of wound toroidal cores made from electrical steels or similar strip products. Through theoretical evaluation and experimental measurements carried out over a few years, magnetic performance of a range of strip wound cores have been quantified at low and high frequency. Using this information a neural network model has been developed for prediction core magnetic field strength, power loss and permeability a wide range of flux density and frequency. Input parameters include variables such as core geometry; dimensions strip width and thickness, induction frequency and flux density. The developed network provides flexibility in the choice of training parameters, transfer functions and training algorithm thereby enhancing accuracy.
dc.identifier.doi10.3390/mca8020217
dc.identifier.endpage223
dc.identifier.issn1300-686X
dc.identifier.issue1-3
dc.identifier.scopus2-s2.0-0037696509
dc.identifier.startpage217
dc.identifier.urihttps://hdl.handle.net/11452/52918
dc.identifier.volume8
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherAssociation for Scientific Research
dc.relation.journalMathematical and Computational Applications
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectToroidal cores
dc.subjectNeural network
dc.subjectMagnetic properties
dc.subjectElectrical steels
dc.subject.scopus
dc.titlePrediction of magnetic properties of strip wound toroidal cores up to 2 kHz using artificial neural network
dc.typeconferenceObject
dc.type.subtypeConference Paper
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Fizik Bölümü
relation.isAuthorOfPublication0c85f61f-70fa-4f0d-83a0-a3a0ac50e069
relation.isAuthorOfPublicationa349a06c-7ca6-4a27-8708-8157e5962651
relation.isAuthorOfPublication.latestForDiscovery0c85f61f-70fa-4f0d-83a0-a3a0ac50e069

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Derebaşı_Küçük_2003.pdf
Boyut:
7.1 MB
Format:
Adobe Portable Document Format