Publication:
Stochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filtering

dc.contributor.authorKoçal, Osman Hilmi
dc.contributor.buuauthorHatun, Metin
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0003-0279-5508
dc.contributor.researcheridAAH-2199-2021
dc.contributor.scopusid54684165800
dc.date.accessioned2023-02-03T12:28:36Z
dc.date.available2023-02-03T12:28:36Z
dc.date.issued2016-05-17
dc.description.abstractA stochastic convergence analysis of the parameter vector estimation obtained by the recursive successive over-relaxation (RSOR) algorithm is performed in mean sense and mean-square sense. Also, excess of mean-square error and misadjustment analysis of the RSOR algorithm is presented. These results are verified by ensemble-averaged computer simulations. Furthermore, the performance of the RSOR algorithm is examined using a system identification example and compared with other widely used adaptive algorithms. Computer simulations show that the RSOR algorithm has better convergence rate than the widely used gradient-based algorithms and gives comparable results obtained by the recursive least-squares RLS algorithm.
dc.identifier.citationHatun, M. ve Koçal, O. H. (2017). ''Stochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filtering''. Signal, Image and Video Processing, 11(1), 137-144.
dc.identifier.endpage144
dc.identifier.issn1863-1703
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84976313525
dc.identifier.startpage137
dc.identifier.urihttps://doi.org/10.1007/s11760-016-0912-7
dc.identifier.uri1863-1711
dc.identifier.urihttps://link.springer.com/article/10.1007/s11760-016-0912-7
dc.identifier.urihttp://hdl.handle.net/11452/30829
dc.identifier.volume11
dc.identifier.wos000392288800018
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt içi
dc.relation.journalSignal, Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEngineering
dc.subjectImaging science & photographic technology
dc.subjectAdaptive filters
dc.subjectSuccessive over-relaxation
dc.subjectGauss-seidel
dc.subjectSystem identification
dc.subjectConvergence analysis
dc.subjectAdaptive algorithms
dc.subjectAdaptive filtering
dc.subjectAlgorithms
dc.subjectIdentification (control systems)
dc.subjectMean square error
dc.subjectReligious buildings
dc.subjectStochastic systems
dc.subjectConvergence analysis
dc.subjectConvergence rates
dc.subjectEnsemble-averaged
dc.subjectGradient based algorithm
dc.subjectParameter vectors
dc.subjectRecursive least square (RLS)
dc.subjectRLS algorithms
dc.subjectRLS algorithms
dc.subjectSuccessive over relaxation
dc.subjectAdaptive filters
dc.subject.scopusRecursive Algorithm; Adaptive Filtering; Beamforming
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosImaging science & photographic technology
dc.titleStochastic convergence analysis of recursive successive over-relaxation algorithm in adaptive filtering
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: