Publication:
A computational study to predict the combined effects of surface roughness and heat flux conditions on converging-nozzle flows

dc.contributor.buuauthorÖzalp, A. Alper
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0002-4976-9027
dc.contributor.researcheridABI-6888-2020
dc.contributor.scopusid6506131689
dc.date.accessioned2022-01-13T06:10:41Z
dc.date.available2022-01-13T06:10:41Z
dc.date.issued2005
dc.description.abstractCritical design parameters on the performance prediction of converging nozzles are the geometric features and the operating conditions, which include the stagnant properties at the inlet, frictional and heat transfer behaviors on the nozzle wall; where the latter two are hard to handle together in compressible high-speed flows. This paper presents a recent computational model, that integrates the axisymmetric continuity, momentum and energy equations, to predict the combined effects of surface roughness and heat flux conditions on the flow and heat transfer characteristics of compressible flows through converging nozzles. To build a comprehensive overview, analyses are conducted at convergence half angles from 0 degrees to 9 degrees and inlet stagnation to back pressure ratios ranged from 1.01 to 2, covering both the un-choked and choked cases. Non-dimensional surface roughness and surface heat flux values are in the order of 0.0025-0.05 and 20-2000 kW/m(2) respectively. The influences of the model parameters on the nozzle performance are discussed through the streamwise variations of Mach number, shear stress, discharge coefficient and Nusselt number; to verify the validity of the model comparisons are made with the numerical and experimental data available in the literature.
dc.identifier.citationÖzalp, A. A. (2005). "A computational study to predict the combined effects of surface roughness and heat flux conditions on converging-nozzle flows". Transactions of the Canadian Society for Mechanical Engineering, 29(1), 67-80.
dc.identifier.endpage80
dc.identifier.issn0315-8977
dc.identifier.issue1
dc.identifier.scopus2-s2.0-23444432700
dc.identifier.startpage67
dc.identifier.urihttps://doi.org/10.1139/tcsme-2005-0005
dc.identifier.urihttps://cdnsciencepub.com/doi/10.1139/tcsme-2005-0005
dc.identifier.urihttp://hdl.handle.net/11452/24054
dc.identifier.volume29
dc.identifier.wos000230684500005
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherCanadian Science Publishing
dc.relation.journalTransactions of the Canadian Society for Mechanical Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEngineering
dc.subjectSonic nozzles
dc.subjectRocket
dc.subjectCoefficients
dc.subjectWear
dc.subjectBoundary conditions
dc.subjectCompressible flow
dc.subjectCooling
dc.subjectFriction
dc.subjectHeat flux
dc.subjectHeat transfer
dc.subjectKinematics
dc.subjectNusselt number
dc.subjectShear stress
dc.subjectSurface roughness
dc.subjectViscosity
dc.subjectHigh-speed flows
dc.subjectMach number
dc.subjectNozzle flow
dc.subjectNozzle geometry
dc.subjectNozzles
dc.subject.scopusSonic Nozzles; Discharge Coefficient; Critical Flow
dc.subject.wosEngineering, mechanical
dc.titleA computational study to predict the combined effects of surface roughness and heat flux conditions on converging-nozzle flows
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: