Publication:
Detecting the presence of ENF signal in digital videos: A superpixel-based approach

dc.contributor.authorMemon, Nasir
dc.contributor.buuauthorVatansever, Saffet
dc.contributor.buuauthorDirik, Ahmet Emir
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6200-1717
dc.contributor.researcheridK-6977-2012
dc.contributor.scopusid57190736821
dc.contributor.scopusid23033658100
dc.date.accessioned2023-01-02T06:30:19Z
dc.date.available2023-01-02T06:30:19Z
dc.date.issued2017-10
dc.description.abstractElectrical network frequency (ENF) instantaneously fluctuates around its nominal value (50/60 Hz) due to a continuous disparity between generated power and consumed power. Consequently, luminous intensity of a mains-powered light source varies depending on ENF fluctuations in the grid network. Variations in the luminance over time can be captured from video recordings and ENF can be estimated through content analysis of these recordings. In ENF-based video forensics, it is critical to check whether a given video file is appropriate for this type of analysis. That is, if ENF signal is not present in a given video, it would be useless to apply ENF-based forensic analysis. In this letter, an ENF signal presence detection method is introduced for videos. The proposed method is based on multiple ENF signal estimations from steady super pixels, i.e., pixels that are most likely uniform in color, brightness, and texture, and intra-class similarity of the estimated signals. Subsequently, consistency among these estimates is then used to determine the presence or absence of an ENF signal in a given video. The proposed technique can operate on video clips as short as 2 min and is independent of the camera sensor type, i.e., CCD or CMOS.
dc.description.sponsorshipUnited States Department of Defense Defense Advanced Research Projects Agency (DARPA)
dc.description.sponsorshipAir Force Research Laboratory - FA8750-16-2-0173
dc.identifier.citationVatansever, S. vd. (2017). ''Detecting the presence of ENF signal in digital videos: A superpixel-based approach''. IEEE Signal Processing Letters, 24(10), 1463-1467.
dc.identifier.endpage1467
dc.identifier.issn1070-9908
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85028499689
dc.identifier.startpage1463
dc.identifier.urihttps://doi.org/10.1109/LSP.2017.2741440
dc.identifier.urihttps://ieeexplore.ieee.org/document/8012515
dc.identifier.uri1558-2361
dc.identifier.urihttp://hdl.handle.net/11452/30209
dc.identifier.volume24
dc.identifier.wos000408775600003
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherIEEE
dc.relation.collaborationYurt dışı
dc.relation.collaborationYurt içi
dc.relation.journalIEEE Signal Processing Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEngineering
dc.subjectElectrical network frequency (ENF)
dc.subjectENF detection
dc.subjectMultimedia forensics
dc.subjectSuperpixel
dc.subjectVideo forensics
dc.subjectElectric-network frequency
dc.subjectAudio
dc.subjectForensics
dc.subjectCriterion
dc.subjectCameras
dc.subjectElectric network analysis
dc.subjectElectric network parameters
dc.subjectEstimation
dc.subjectFrequency estimation
dc.subjectLight sources
dc.subjectLighting
dc.subjectMultimedia systems
dc.subjectPixels
dc.subjectSignal detection
dc.subjectVideo recording
dc.subjectCircuit theory
dc.subjectForensics
dc.subjectMultimedia forensics
dc.subjectNetwork frequency
dc.subjectSuper pixels
dc.subjectTime frequency analysis
dc.subjectVideo forensics
dc.subjectVideos
dc.subjectComputer graphics
dc.subjectLuminance
dc.subject.scopusCircuit Theory; Audio Recordings; Forensic Science
dc.subject.wosEngineering, electrical & electronic
dc.titleDetecting the presence of ENF signal in digital videos: A superpixel-based approach
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Vatansever_vd_2017.pdf
Size:
277.52 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: