Publication:
Diagnosis of lung cancer with e-nose

dc.contributor.authorÖzsandıkçıoğlu, Ümit
dc.contributor.authorAtasoy, Ayten
dc.contributor.authorYapıcı, Şule
dc.contributor.authorIEEE
dc.contributor.buuauthorYapıcı, Şule
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik Mühendisliği Bölümü
dc.contributor.researcheridCGQ-2553-2022
dc.date.accessioned2024-07-25T11:47:03Z
dc.date.available2024-07-25T11:47:03Z
dc.date.issued2018-01-01
dc.descriptionBu çalışma, 02-05, Mayıs 2018 tarihlerinde İzmir[Türkiye]’de düzenlenen 26. IEEE Signal Processing and Communications Applications Conference (SIU) Kongresi‘nde bildiri olarak sunulmuştur.
dc.description.abstractIn this work an Electronic Nose system with low cost is developed in order to analyze human breath and this system's success is tested on diagnosing lung cancer. In this Electronic Nose system, Quartz Crystal Microbalance and Metal Oxide Semiconductor gas sensors are used. The sensors that are sensed to volatile organic compounds found in the breaths of patient lung cancer patients are selected. Breath examples of lung cancer patient and healthy people are analysed with this system. Data acquired from system are preprocessed and dimension of these data are reduced by Principal Component Analysis method. After this processed, features from data are extracted. Classification of data is examined with k-Nearest Neighbors, Support Vector Machines and Artificial Neural Networks algorithms. Maximum success rates obtained with these algorithms are 91.4%, 85.7%, 91.4% respectively.
dc.description.sponsorshipIEEE
dc.description.sponsorshipHuawei
dc.description.sponsorshipAselsan
dc.description.sponsorshipNETAS
dc.description.sponsorshipIEEE Türkiye
dc.description.sponsorshipIEEE Signal Proc Soc
dc.description.sponsorshipIEEE Commun Soc
dc.description.sponsorshipViSRATEK
dc.description.sponsorshipAdresgezgini
dc.description.sponsorshipRohde & Schwarz
dc.description.sponsorshipIntegrated Syst & Syst Design
dc.description.sponsorshipAtılım Üniversitesi
dc.description.sponsorshipHavelsan
dc.description.sponsorshipİzmir Katip Çelebi Üniversitesi
dc.identifier.isbn978-1-5386-1501-0
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11452/43445
dc.identifier.wos000511448500456
dc.indexed.wosWOS.ISTP
dc.language.isoen
dc.publisherIEEE
dc.relation.journal2018 26. Signal Processing And Communications Applications Conference (Siu)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLung cancer
dc.subjectPrincipal component analysis
dc.subjectK-nearest neighbors
dc.subjectSupport vector machines
dc.subjectArtificial neural networks
dc.subjectClassification
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, electrical & electronic
dc.subjectTelecommunications
dc.subjectEngineering
dc.titleDiagnosis of lung cancer with e-nose
dc.typeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Mühendisliği Bölümü
local.indexed.atWOS

Files