Yayın: Gated transformer network based EEG emotion recognition
dc.contributor.author | Bilgin, Metin | |
dc.contributor.author | Mert, Ahmet | |
dc.contributor.buuauthor | BİLGİN, METİN | |
dc.contributor.department | Mühendislik Fakültesi | |
dc.contributor.department | Bilgisayar Mühendisliği Bölümü | |
dc.contributor.researcherid | AAH-2049-2021 | |
dc.date.accessioned | 2025-02-06T08:15:40Z | |
dc.date.available | 2025-02-06T08:15:40Z | |
dc.date.issued | 2024-06-24 | |
dc.description.abstract | Multi-channel Electroencephalogram (EEG) based emotion recognition is focused on several analysis of frequency bands of the acquired signals. In this paper, spectral properties appeared on five EEG bands (delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) and gated transformer network (GTN) based emotion recognition using EEG signal are proposed. Spectral energies and differential entropies of 62-channel signals are converted to 3D (sequence-channel-trial) form to feed the GTN. The GTN with enhanced gated two tower based transformer architecture is fed by 3D sequences extracted from SEED and SEED-IV emotional datasets. 15 participants' states in session 1-3 are evaluated using the proposed GTN based sequence classification, and the results are repeated by 3x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\small \times $$\end{document} shuffling. Totally, 135 times training and testing are performed on each dataset, and the results are presented. The proposed GTN model achieves mean accuracy rates of 98.82% on the SEED dataset and 96.77% on the SEED-IV dataset for three and four emotional state recognition tasks, respectively. The proposed emotion recognition model can be employed as a promising approach for EEG emotion recognition. | |
dc.identifier.doi | 10.1007/s11760-024-03360-5 | |
dc.identifier.eissn | 1863-1711 | |
dc.identifier.endpage | 6910 | |
dc.identifier.issn | 1863-1703 | |
dc.identifier.issue | 10 | |
dc.identifier.scopus | 2-s2.0-85196757919 | |
dc.identifier.startpage | 6903 | |
dc.identifier.uri | https://doi.org/10.1007/s11760-024-03360-5 | |
dc.identifier.uri | https://link.springer.com/article/10.1007/s11760-024-03360-5 | |
dc.identifier.uri | https://hdl.handle.net/11452/50157 | |
dc.identifier.volume | 18 | |
dc.identifier.wos | 001253354200001 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.journal | Signal Image and Video Processing | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Convolutional neural-networks | |
dc.subject | Signals | |
dc.subject | Entropy | |
dc.subject | Gated transformer network | |
dc.subject | Emotion recognition | |
dc.subject | Transformer | |
dc.subject | Time-series | |
dc.subject | Science & technology | |
dc.subject | Technology | |
dc.subject | Engineering, electrical & electronic | |
dc.subject | Imaging science & photographic technology | |
dc.subject | Engineering | |
dc.subject | Imaging science & photographic technology | |
dc.title | Gated transformer network based EEG emotion recognition | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.contributor.department | Mühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü | |
local.indexed.at | WOS | |
local.indexed.at | Scopus | |
relation.isAuthorOfPublication | cf59076b-d88e-4695-a08c-b06b98b4e25a | |
relation.isAuthorOfPublication.latestForDiscovery | cf59076b-d88e-4695-a08c-b06b98b4e25a |