Yayın:
Prognostics and health management of wind energy infrastructure systems

dc.contributor.authorYüce, Celalettin
dc.contributor.authorGeçgel, Özhan
dc.contributor.authorDoğan, Oğuz
dc.contributor.authorDabetwar, Shweta
dc.contributor.authorYanık, Yaşar
dc.contributor.authorEkwaro-Osire, Stephen
dc.contributor.buuauthorKARPAT, ESİN
dc.contributor.buuauthorKalay, Onur Can
dc.contributor.buuauthorKarpat, Esin
dc.contributor.buuauthorKARPAT, FATİH
dc.contributor.buuauthorKarpat, Fatih
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0002-2740-8183
dc.contributor.orcid0000-0001-8474-7328
dc.contributor.researcheridA-5259-2018
dc.contributor.researcheridAAH-3387-2021
dc.date.accessioned2024-11-27T10:48:18Z
dc.date.available2024-11-27T10:48:18Z
dc.date.issued2022-06-01
dc.description.abstractThe improvements in wind energy infrastructure have been a constant process throughout many decades. There are new advancements in technology that can further contribute toward the prognostics and health management (PHM) in this industry. These advancements are driven by the need to fully explore the impact of uncertainty, quality and quantity of data, physics-based machine learning (PBML), and digital twin (DT). All these aspects need to be taken into consideration to perform an effective PHM of wind energy Infrastructure. To address these aspects, four research questions were formulated. What s the role of uncertainty in machine learning (ML) in diagnostics and prognostics? What is the role of data augmentation and quality of data for ML? What is the role of PBML? What is the role of the DT in diagnostics and prognostics? The methodology used was Preferred Reporting Items for Systematic Review and Meta-Analysis. A total of 143 records, from the last five years, were analyzed. Each of the four questions was answered by discussion of literature, definitions, critical aspects, benefits and challenges, the role of aspect in PHM of wind energy infrastructure systems, and conclusion.
dc.identifier.doi10.1115/1.4053422
dc.identifier.issn2332-9017
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85134034061
dc.identifier.urihttps://doi.org/10.1115/1.4053422
dc.identifier.urihttps://hdl.handle.net/11452/48567
dc.identifier.volume8
dc.identifier.wos000790396500001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherAsme
dc.relation.journalAsce-asme Journal Of Risk And Uncertainty In Engineering Systems Part B-mechanical Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectIntelligent fault-diagnosis
dc.subjectConvolutional neural-network
dc.subjectDigital twin feasibility
dc.subjectData augmentation
dc.subjectPower curve
dc.subjectNondeterministic predictions
dc.subjectUncertainty quantification
dc.subjectDesign framework
dc.subjectDynamic-response
dc.subjectFatigue life
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, multidisciplinary
dc.subjectEngineering
dc.titlePrognostics and health management of wind energy infrastructure systems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication99e2dd84-0120-4c04-a2f5-3b242abc84f2
relation.isAuthorOfPublication56b8a5d3-7046-4188-ad6e-1ae947a1b51d
relation.isAuthorOfPublication.latestForDiscovery56b8a5d3-7046-4188-ad6e-1ae947a1b51d

Dosyalar