Yayın:
Optimization of vehicle conceptual design problems using an enhanced hunger games search algorithm

dc.contributor.authorMehta, Pranav
dc.contributor.authorPanagant, Natee
dc.contributor.authorWansasueb, Kittinan
dc.contributor.authorSait, Sadiq M.
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorKumar, Sumit
dc.contributor.authorYıldız, Betül Sultan
dc.contributor.authorHussien, Abdelazim G.
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.researcheridAAH-6495-2019
dc.contributor.researcheridKWL-3519-2024
dc.date.accessioned2025-01-21T06:37:41Z
dc.date.available2025-01-21T06:37:41Z
dc.date.issued2024-10-15
dc.description.abstractElectric vehicles have become a standard means of transportation in the last 10 years. This paper aims to formalize design optimization problems for electric vehicle components. It presents a tool conceptual design technique with a hunger games search optimizer that incorporates dynamic adversary-based learning and diversity leader (referred to as HGS-DOL-DIL) to overcome the local optimum trap and low convergence rate limitations of the Hunger Games search algorithm to improve the convergence rate. The performance of the proposed algorithms is studied on six widely used engineering design problems, complex constraints, and discrete variables. For the HGS-DOL-DIL practical feasibility analysis, a case study of shape optimization of an electric car suspension arm from the industry is carried out. Overall, the inclusion of the OL strategy has proven its superiority in solving real-world problems, especially in solving real-world problems such as shape optimization of an electric vehicle automobile suspension arm, showing that the algorithm improves the search space improves the solution quality, and reflects its potential to find global optimum solutions in a well-balanced exploration and exploitation phase.
dc.identifier.doi10.1515/mt-2024-0151
dc.identifier.endpage1889
dc.identifier.issn0025-5300
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85207323608
dc.identifier.startpage1864
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0151
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2024-0151/html
dc.identifier.urihttps://hdl.handle.net/11452/49633
dc.identifier.volume66
dc.identifier.wos001331109900001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSalp swarm algorithm
dc.subjectStructural optimization
dc.subjectMetaheuristic approach
dc.subjectMetaheuristic
dc.subjectDynamic opposite learning
dc.subjectHunger games search
dc.subjectGlobal optimization
dc.subjectEngineering design
dc.subjectMaterials science
dc.titleOptimization of vehicle conceptual design problems using an enhanced hunger games search algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar