Yayın: Multi-objective optimization of three-stage turbomachine rotor based on complex transfer matrix method
Dosyalar
Tarih
Kurum Yazarları
Yazarlar
Nis, Hüseyin Tarık
Yıldız, Ahmet
Danışman
Dil
Türü
Yayıncı:
Mdpi
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
This study presents the complex transfer matrix method (CTMM) as an advanced mathematical model, providing significant advantages over the finite element method (FEM) by yielding rapid solutions for complex optimization problems. In order to design a more efficient structure of a three-stage turbomachine rotor, we integrated this method with various optimization algorithms, including genetic algorithm (GA), differential evolution (DE), simulated annealing (SA), gravitational search algorithm (GSA), black hole (BH), particle swarm optimization (PSO), Harris hawk optimization (HHO), artificial bee colony (ABC), and non-metaheuristic pattern search (PS). Thus, the best rotor geometry can be obtained fast with minimum bearing forces and disk deflections within design limits. In the results, the efficiency of the CTMM for achieving optimized designs is demonstrated. The CTMM outperformed the FEM in both speed and applicability for complex rotordynamic problems. The CTMM was found to deliver results of comparable quality much faster than the FEM, especially with higher element quality. The use of the CTMM in the iterative optimization process is shown to be highly advantageous. Furthermore, it is noted that among the different optimization algorithms, ABC provided the best results for this multi-objective optimization problem.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
System, Design, Algorithm, Multi-objective, Optimization, Transfer matrix method, Rotordynamics, Chemistry, Engineering, Materials science, Physics
