Publication:
Efficient decoupling-assisted evolutionary/metaheuristic framework for expensive reliability-based design optimization problems

dc.contributor.authorMeng, Zeng
dc.contributor.authorMirjalili, Seyedali
dc.contributor.buuauthorYildiz, Ali Riza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-11-26T06:03:20Z
dc.date.available2024-11-26T06:03:20Z
dc.date.issued2022-06-09
dc.description.abstractReliability-based design optimization (RBDO) algorithm is to minimize the objective under the probabilistic factors. While gradient-based and classical evolutionary RBDO algorithms provide promising performance on simple optimization problems, they are likely to perform poorly on challenging problems, including the multimodal functions, discrete design spaces, non-differential problems, etc. This paper proposes a unified framework to improve the performance of existing RBDO algorithms for complex RBDO problems. Our framework is based on three new strategies: generalized decoupling evolutionary and metaheuristic RBDO framework, particle's memory saving strategy, and adaptive fractional-order equilibrium optimizer algorithm. The proposed algorithm is characterized by a decoupling strategy to enable the parallel operation of the inner reliability computation and outer deterministic optimization, a particle's memory saving strategy to provide effective guidance from the previous iteration, and the adaptive fractional-order equilibrium optimizer algorithm to enhance the search efficiency and global convergence capacity. To evaluate the performance of the proposed algorithm, a wide range of experiments are conducted on different types of use cases. The experimental results demonstrate that our algorithm provides superior performance over other comparative algorithms.
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 11972143
dc.description.sponsorshipFundamental Research Funds for the Central Universities JZ2020HGPA0112
dc.description.sponsorshipFoundation of State Key Laboratory of Structural Analysis for Industrial Equipment from Dalian University of Technology GZ21101
dc.identifier.doi10.1016/j.eswa.2022.117640
dc.identifier.issn0957-4174
dc.identifier.scopus2-s2.0-85131661764
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2022.117640
dc.identifier.urihttps://hdl.handle.net/11452/48477
dc.identifier.volume205
dc.identifier.wos000832959800004
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltd
dc.relation.journalExpert Systems With Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPerformance-measure approach
dc.subjectSingle-loop approach
dc.subjectDifferential evolution
dc.subjectSequential optimization
dc.subjectStructural design
dc.subjectRobust design
dc.subjectAlgorithm
dc.subjectApproximation
dc.subjectLinearization
dc.subjectGradient
dc.subjectReliability-based design optimization
dc.subjectFractional-order equilibrium optimizer algorithm
dc.subjectMetaheuristic
dc.subjectParticle's memory saving strategy
dc.subjectEvolutionary algorithm
dc.subjectOptimization
dc.subjectAlgorithm
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, artificial intelligence
dc.subjectEngineering, electrical & electronic
dc.subjectOperations research & management science
dc.subjectComputer science
dc.subjectEngineering
dc.titleEfficient decoupling-assisted evolutionary/metaheuristic framework for expensive reliability-based design optimization problems
dc.typeArticle
dspace.entity.typePublication
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Yildiz_vd_2022.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format