Yayın:
Vibration analysis of embedded porous nanobeams under thermal effects using boosting machine learning algorithms and semi-analytical approach

dc.contributor.authorTariq, Aiman
dc.contributor.authorUzun, Büşra
dc.contributor.authorDeliktaş, Babur
dc.contributor.authorYaylı, Mustafa Özgür
dc.contributor.buuauthorTariq, Aiman
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridAAJ-6390-2021
dc.contributor.researcheridAAH-8687-2021
dc.contributor.researcheridABE-6914-2020
dc.date.accessioned2025-01-16T10:30:43Z
dc.date.available2025-01-16T10:30:43Z
dc.date.issued2024-02-21
dc.description.abstractThis study presents a thermal vibration analysis of functionally graded porous nanobeams using boosting machine learning models and a semi-analytical approach. Nonlocal strain gradient theory is employed to explore vibration behavior, accounting for thermal and size effects. A semi-analytical approach solution utilizing Fourier series and Stokes' transform to establish an eigenvalue problem capable of examining vibrational frequencies of porous nanobeams in both rigid and deformable boundary conditions is presented. Four boosting models including gradient boosting (GBoost), light gradient boosting (LGBoost), extreme gradient boosting (LGBoost), and adaptive boosting (AdaBoost) are employed to study the impact of seven crucial parameters on natural frequencies of a nanobeam. Sobol quasi-random space-filling method is used to generate the samples by varying input feature combinations for different porous nanobeam distributions. The model performance is assessed using statistical metrics, visualization tools, 5-fold cross-validation, and SHAP analysis for feature importance. The results highlight the effectiveness of boosting ML models in predicting natural frequencies, particularly XGBoost, which achieved an exceptional R2 value of 0.999, accompanied by the lowest MAE, MAPE, and RMSE values among the models assessed. LGBoost and AdaBoost follow XGBoost in performance, while GBoost exhibits relatively lower effectiveness, as highlighted by radar plots. The SHAP analysis revealed the significant impact of the foundation parameter on frequency prediction, with porosity coefficients notably influencing higher vibration modes.
dc.identifier.doi10.1080/15376494.2024.2320809
dc.identifier.endpage12343
dc.identifier.issn1537-6494
dc.identifier.issue29
dc.identifier.scopus2-s2.0-85188452535
dc.identifier.startpage12320
dc.identifier.urihttps://doi.org/10.1080/15376494.2024.2320809
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/15376494.2024.2320809
dc.identifier.urihttps://hdl.handle.net/11452/49489
dc.identifier.volume31
dc.identifier.wos001185027300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTaylor & Francis Inc
dc.relation.bapFGA-2022-1211
dc.relation.journalMechanics of Advanced Materials and Structures
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFramework
dc.subjectDesign
dc.subjectPorous nanobeams
dc.subjectVibration analysis
dc.subjectBoosting algorithms
dc.subjectSize effect
dc.subjectShap analysis
dc.subjectMaterials science
dc.subjectMechanics
dc.subjectFramework
dc.subjectDesign
dc.titleVibration analysis of embedded porous nanobeams under thermal effects using boosting machine learning algorithms and semi-analytical approach
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication.latestForDiscovery9d931598-bdd6-4fdd-b625-909ec0444b5c

Dosyalar