Yayın:
On the machine learning approach for computational homogenization of short fiber-reinforced composites with elastoplastic behavior

dc.contributor.authorVoyiadjis, George Z.
dc.contributor.buuauthorYAZICI, MURAT
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorTariq, Aiman Kaldır
dc.contributor.buuauthorPolat, Ayşe
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Ana Bilim Dalı
dc.contributor.departmentİnşaat Mühendisliği Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridR-1476-2018
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridMCJ-8153-2025
dc.contributor.researcheridAAH-8687-2021
dc.date.accessioned2025-10-21T09:17:06Z
dc.date.issued2025-08-29
dc.description.abstractThis study aims to develop machine learning (ML)-based homogenization models to efficiently predict the effective elastoplastic properties of short fiber-reinforced composites (SFRCs), reducing the reliance on computationally expensive micromechanical simulations. Sobol sampling is employed to generate training data by varying constitutive and microstructural parameters of representative volume element. Several ML models including artificial neural networks (ANN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB) are trained to predict homogenized stress-strain responses. A new approach is introduced that decomposes the stress-strain response into elastic and plastic components, allowing the ML models to learn these components separately and effectively. Additionally, the Taguchi method (L27 orthogonal array) is employed to minimize simulation runs and evaluate parameter sensitivity through ANOVA. The best-performing ML model is implemented in a finite element analysis (FEA) of an automotive component. Among all models, ANN demonstrated the highest accuracy in predicting the macroscopic elastoplastic response across a wide range of input parameters. Finally, the ANN-based elastoplastic material model is validated on a real-world macroscopic structure by implementing it into the finite element analysis of an automotive component. The results demonstrate that ML-based homogenization closely matches the traditional homogenization methods and also highlights its ability to effectively capture nonlinear material behavior.
dc.identifier.doi10.1177/07316844251371511
dc.identifier.issn0731-6844
dc.identifier.urihttps://doi.org/10.1177/07316844251371511
dc.identifier.urihttps://hdl.handle.net/11452/55945
dc.identifier.wos001563494400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSage publications ltd
dc.relation.journalJournal of reinforced plastics and composites
dc.subjectMechanical response
dc.subjectTaguchi method
dc.subjectDamage
dc.subjectModel
dc.subjectThermoplastics
dc.subjectOptimization
dc.subjectOrientation
dc.subjectGeneration
dc.subjectDescribe
dc.subjectTensors
dc.subjectShort fiber reinforced composite
dc.subjectMachine learning
dc.subjectRepresentative volume element
dc.subjectHomogenization
dc.subjectElastoplastic material
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectMaterials Science, Composites
dc.subjectPolymer Science
dc.subjectMaterials Science
dc.titleOn the machine learning approach for computational homogenization of short fiber-reinforced composites with elastoplastic behavior
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
relation.isAuthorOfPublication399822ef-6146-4b15-b42f-09551b61eb11
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublication.latestForDiscovery399822ef-6146-4b15-b42f-09551b61eb11

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
Polat_vd_2025.pdf
Boyut:
2.7 MB
Format:
Adobe Portable Document Format